RELATIVE MOTION OF THO SATELLITES IN CLOSE-ELLIPTICAL ORBITS(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING J M MEINTEL NOV 87 F/G 22/3 AD-A188 851 1/1 UNCLASSIFIED

AND CONTRACT OF THE PROPERTY O

Fr.

RELATIVE MOTION OF TWO SATELLITES

IN CLOSE-ELLIPTICAL ORBITS

THESIS

James M Meintel Second Lieutenant, USAF

AFIT/GA/AA/87D-3

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A

Approved for public relocue;
Distribution Unitablished

88 2 03

065

RELATIVE MOTION OF TWO SATELLITES IN CLOSE-ELLIPTICAL ORBITS

THESIS

James M Meintel Second Lieutenant, USAF

AFIT/GA/AA/87D-3

Annroved	for	nublic	release:	distribution	unlimited Sion	For
пррі очес	701	puoric	, elease,	disci ibucion	P VEA EDTE TAY	¥I (2
					Think:	110/ 110/ 111/ 12 (1) 0
					Dist	

RELATIVE MOTION OF TWO SATELLITES IN CLOSE-ELLIPTICAL ORBITS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University

In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Astronautical Engineering

James M. Meintel, B.S.E. Second Lieutenant, USAF

November 1987

Approved for public release; distribution unlimited

The purpose of this study was to find the solution to the relative equations of motion for two satellites in close-elliptical orbits. This was done by performing a harmonic analysis on the Floquet solution, yielding an expression for the solution in terms of time and eccentricity.

The solution was first verified for the circular orbit case to confirm the accuracy of the computer code. It was then found for the elliptical orbit case for small eccentricities.

In finding the solution and writing my thesis, I received invaluable support from my faculty advisor, Dr. William Wiesel. Without his guidance this thesis would have never been completed. Finally, I would like to thank my wife Laura and daughter Kathryn for their understanding during all the extra hours that I spent with this thesis at their expense.

James M. Meintel

Table of Contents

																		page
Preface .			•		•	•	•	•	•	•	•	•		•	•	•	•	ii
List of Fi	igures		•		•	•		•	•	-	•	•					•	iv
List of Ta	ables						•		•	•		•	•			•	-	~
Abstract					•		•		•	•	-	•	•	•		•	•	٧i
I. Introd	duction		•			•		•	•	•	•	•	•	•	•		•	1
II. Prob	lem Des	cript	i on		•	-	•	•	•	•	•	•	-	-	•		•	3
	Introd																	3
	Equati																	3
	Consta																	8
	Floque	t Ana	alys	is				•			_							1 1
	Partic	ular	Sol	uti	on	_	_	_	_	_	_	_	_	_	_	_	_	16
	Conclu																	17
III. Circ	ılar So	lutic	חכ		•	•	•	•	•	•	•	•	•	•	•	•		18
	Introd	luctio	on					•		•	•	•	-	•	-	-	•	18
	Autono																	18
	Circul	ar Sc	oi ut	ion	U	sir	٦g	F]	loc	ļue	et	T	1e	or y	/	-	-	25
	Conclu	sion	•		•	•	•	•	•	•	•	•	•	•	•	•	•	34
IV. Elli	otical	Sol ut	ior	٠.	•	•	•	•	•	•	•	-	-	•	•	-	•	35
	Introd	luctio	חכ			-	•		•	-		•	-	•	•	-	•	35
	Homoge	nous	Sol	uţi	on	-	•	-	•	-	•	-	-	•	•	•	•	35
	Partic	ular	Sol	uti	on	_												45
	Comple																	46
	Conclu																	47
V. Conclu	usi on					•	-			•		•	•	•		-	-	48
Appendix A	A: Exp	lanat	ior	o f	C	owt	out	ter	- 0	Coc	de		•				•	50
Appendix 1	B: Dat	a fro	om H	larm	on:	ic	Ar	na]	l y s	ses	5		-	•	-	•		52
Bibliograp	ohy .				•		•	•		•				•	•		-	66
Vita																_		67

<u>List of Figures</u>

	Figu	re			page						
	1.	Physical	System	and	Coordinate	System			4		
oloba											
עידּא											
}}}}\\\\					i∨						

<u>List of Tables</u>

Table												page
4.1	Fourier	Coefficients	for	F(1,1)		•	•	-	•	•	•	40
B. 1	Fourier	Coefficients	for	F(1,2)		•	•	•	•			52
B.2	Fourier	Coefficients	for	F(1,3)		-		•			-	52
B.3	Fourier	Coefficients	for	F(1,4)			•	•		•	•	5 3
B.4	Fourier	Coefficients	for	F(2,1)		•		•				54
B.5	Fourier	Coefficients	for	F(2,2)			•	•				54
B.6	Fourier	Coefficients	for	F(2,3)		•	•	•	-			55
B.7	Fourier	Coefficients	for	F(2,4)		•		•		•	-	56
B.8	Fourier	Coefficients	for	F(3,1)		•	•	•	•	•		56
B.9	Fourier	Coefficients	for	F(3,3)				•			-	57
B. 10	Fourier	Coefficients	for	F(3,4)		•				•	•	58
B.11	Fourier	Coefficients	for	F(4,2)		•	•	٠.	•	•	•	58
B.12	Fourier	Coefficients	for	F(4,3)		-	•	•	•	-		59
B.13	Fourier	Coefficients	for	F(4,4)		•	•	٠	•		•	59
B.14	Fourier	Coefficients	for	F(5,5)	•	•	•	-	•	-	•	60
B.15	Fourier	Coefficients	for	F(5,6)		•	•	•	•	•	•	61
B. 16	Fourier	Coefficients	for	F(6,5))			•	•	-		61
B.17	Fourier	Coefficients	for	F(6,6)		•			•		•	62
B. 18	Fourier	Coefficients	for	y(1)	-	•	•	•	•	•	•	63
B.19	Fourier	Coefficients	for	y (3)	•	•	-	•	•		•	64
B. 20	Fourier	Coefficients	for	v(4)		_	_	_	_		_	65

AFIT/GA/AA/87D-3

Abstract

The need for a closed form solution for two bodies in close elliptical orbits is identified. Equations of motion are derived using Hamilton's equations. Floquet theory, and its applicability to this problem, is discussed. The solution for circular orbits is derived in closed form and numerically, using Floquet theory and harmonic analysis. Note that the solution for elliptical orbits is found numerically first for very small eccentricities, finding the dependence on eccentricity. The solution is then found for all time as a function of eccentricity.

RELATIVE MOTION OF TWO SATELLITES IN CLOSE-ELLIPTICAL ORBITS

<u>Introduction</u>

The relative motion of satellites is a problem that has been widely studied. The results are very important when one wants to rendezvous or dock two vehicles. Historically, the first use for a solution was during the Gemini program when the first docking maneuvers were perfected for use on the Apollo missions. A complete solution to the problem is relatively simple for circular orbits; however, elliptical orbits add a degree of difficulty.

Numerous authors have published the solution to the problem of two vehicles in circular orbits, including Buning (1984) and Kaplan (1976). Buning derives the equations of motion for the elliptical case, but he limits solution to the circular case. Investigations of the elliptical problem usually amount to subtracting the position and velocity vectors of the individual bodies. This method is limited, however, because of a loss of significant digits during subtraction. Lancaster (1970) formed a computational method to calculate the relative position and velocity for elliptical orbits; however, the results are for single points in time and are not a solution to the equations of

motion. It also does not include out of plane motion.

Berreen and Crisp (1976) form a solution for a probe ejected into an elliptical orbit from a space station in a circular orbit, but does not address the problem of both bodies being in elliptical orbits.

The dynamics for this problem can be solved using the Lagrangian and the Hamiltonian as outlined in Meirovitch (1970). The resulting equations of motion are linear and periodic, permitting a Floquet analysis to be done. The system eigenvectors and the particular solution to the equations of motion can be expressed as functions of their Fourier coefficients, as outlined by Brouwer and Clemence (1961). The results then lead to a complete solution to the relative equations of motion expressed as an expansion of the eccentricity.

II. Problem Description

Introduction

This chapter defines the problem, equations of motion, and describes the theory used to analyze the equations of motion. The coordinate system is defined as a rotating rectangular system with its origin centered on body A. The equations of motion are derived using Lagrange's and Hamilton's equations. The resulting system is linear and time-periodic, making Floquet theory applicable in solving for the homogenous solution to the system. A brief explanation of the solution for autonomous systems is also included. In addition, this chapter contains information relevant to finding repeated eigenvectors, Fourier coefficients, and a particular solution to the equations of motion.

Equations of Motion

The equations of motion are derived by finding the Lagrangian and then forming the Hamiltonian for the system shown in Figure 1. The figure shows two coordinate systems. The first system has its origin at the center of the gravitational field, and the polar coordinates R and θ describe the orbit of body A. The vector ϱ is the position of body B with respect to A.

Figure 1. Physical System and Coordinate System

Both bodies are assumed to be in two-body, unperturbed orbits. The masses of each body are also assumed to be negligible, thus any gravitational attraction between bodies A and B can be ignored.

The second coordinate system is a rotating, rectangular coordinate system. The origin of the system is at the center of body A and follows body A along its two-body orbital path. The x-direction is along the position vector, R, and the y-direction is perpendicular to the x-direction in the orbital plane. The z-direction completes the right-handed system. For this system, as seen from an observer in body A, the coordinate directions are up,

forward and left. The z-direction is the only coordinate out of the plane of the orbit.

In order to determine the Lagrangian for the second particle, the position and the square of the velocity vector for body B must be found. The position of body B is:

$$r = (R + x) i + y j + z k$$
 (2.1)

The velocity then, including the rotating terms, is:

$$\dot{r} = (\dot{R} + \dot{x} - \dot{\theta} y) \dot{i} + (\dot{y} + \dot{\theta} R + \dot{\theta} x) \dot{j} + \dot{z} \dot{k} \qquad (2.2)$$

thus,

$$\dot{r} \cdot \dot{r} = \dot{R}^2 + \dot{x}^2 + y^2 \dot{\theta}^2 + 2 \dot{R} \dot{x} - 2 \dot{\theta} \dot{R} y - 2 \dot{\theta} \dot{x} y + \dot{y}^2$$

$$+ R^2 \dot{\theta}^2 + \dot{\theta}^2 x^2 + 2 \dot{\theta} x \dot{y} + 2 R \dot{\theta} \dot{y} + 2 R \dot{\theta}^2 x + \dot{z}^2 (2.3)$$

The gravity potential per unit mass of body B for the two-body problem is:

$$V/m = -\mu/|r| = -\mu \left[(R + x)^{2} + y^{2} + z^{2} \right]^{-1/2}$$

$$= -\frac{\mu}{R} \left[1 + \frac{2x}{R} + \frac{x^{2}}{R^{2}} + \frac{y^{2}}{R^{2}} + \frac{z^{2}}{R^{2}} \right]^{-1/2}$$
(2.4)

Expanding the denominator and dropping the terms of order greater than two yields

$$V/m = -\frac{\mu}{R} \left[1 - \frac{x}{R} + \frac{x^2}{R^2} - \frac{y^2}{2R^2} - \frac{z^2}{2R^2} + \cdots \right]$$
 (2.5)

With the Lagrangian per unit mass

$$\mathcal{Z} = T/m - V/m \tag{2.6}$$

and the kinetic energy per unit mass

$$T/m = \frac{1}{2} \left(\dot{r} \cdot \dot{r} \right) \tag{2.7}$$

the resulting Lagrangian is:

$$\mathcal{L} = \frac{1}{2} \dot{R}^{2} + \frac{1}{2} \dot{x}^{2} + \frac{1}{2} \dot{\theta}^{2} y^{2} + \dot{R} \dot{x} - \dot{\theta} \dot{R} y - \dot{\theta} \dot{x} y + \frac{1}{2} \dot{y}^{2}$$

$$+ \frac{1}{2} \dot{\theta}^{2} R^{2} + \frac{1}{2} \dot{\theta}^{2} x^{2} + \dot{\theta} x \dot{y} + \dot{\theta} \dot{R} y + \dot{\theta}^{2} R x + \frac{1}{2} z^{2}$$

$$+ \frac{\mu}{R} - \frac{\mu}{R^{2}} x + \frac{\mu}{R^{3}} x^{2} - \frac{\mu}{2R^{3}} y^{2} - \frac{\mu}{2R^{3}} z^{2} \qquad (2.8)$$

The Hamiltonian for a system is found from the following equation:

$$H = \sum p_i \dot{q}_i - x \qquad (2.9)$$

were the q's are the coordinates as defined before, and the p's are the conjugate momenta which can be found by

$$p_{i} = \frac{\partial \mathcal{L}}{\partial q_{i}} \tag{2.10}$$

The resulting momenta are

$$p_{y} = \dot{x} + \dot{R} - \dot{\theta} y \qquad (2.11)$$

$$p_{y} = \dot{y} + \dot{\theta} \times + \dot{\theta} R \qquad (2.12)$$

$$p_{z} = \dot{z} \tag{2.13}$$

さいけん そうしゅうしゅう こうしゅうしゅう こうしゅうしゅう こうしゅうしゅう こうしゅうしゅう

After solving the above equations for the \dot{q}_i 's and substituting into Eq (2.9), the resulting Hamiltonian is

$$H = \frac{1}{2} p_{x}^{2} + \frac{1}{2} p_{y}^{2} + \frac{1}{2} p_{z}^{2} - \frac{\mu}{R} + \frac{\mu}{R^{2}} q_{x} - \frac{\mu}{R^{3}} q_{x}^{2}$$

$$+ \frac{1}{2} \frac{\mu}{R^{3}} q_{y}^{2} + \frac{1}{2} \frac{\mu}{R^{3}} q_{z}^{2} - \dot{R} p_{x} + \dot{\theta} p_{x} q_{y}$$

$$- \dot{\theta} q_{x} p_{y} - \dot{\theta} R p_{y} \qquad (2.14)$$

To find Hamilton's equations of motion for the p's and q's the following relationships must be used:

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$
 (2.15)

$$\dot{p}_{i} = -\frac{\partial H}{\partial q_{i}} \tag{2.16}$$

Substituting the Hamiltonian into these two equations yields .

the following system of equations which describe the motion of body B with respect to body A.

$$\dot{q} = p - \dot{R} + \dot{\theta} q \qquad (2.17)$$

$$\dot{q} = p - \dot{\theta} q - \dot{\theta} R \qquad (2.18)$$

$$\dot{q} = p \qquad (2.20)$$

and

$$\dot{p}_{x} = -\frac{\mu}{R^{2}} + \frac{2\mu}{R^{3}} q_{x} + \dot{\theta} p_{y}$$
 (2.21)

$$\dot{\mathbf{p}}_{y} = -\frac{\mu}{\mathbf{R}^{3}} \mathbf{q}_{y} - \dot{\theta} \mathbf{p}_{x} \tag{2.22}$$

$$\dot{p}_{z} = -\frac{\mu}{R^{3}} q_{z}$$
 (2.23)

Putting these equations into matrix form yields the following set of equations.

For the case in which body A is in a circular orbit, the above reduces to a linear, constant coefficient system. However, if body A is in an elliptical orbit, R and $\dot{\theta}$ are time dependent. Nevertheless, both R and $\dot{\theta}$ are periodic; therefore the entire Hamiltonian described above is a linear, time-periodic system.

Constant Coefficient Systems

For body A in a circular orbit, Eq (2.24) can be written in the form $\dot{x} = A \dot{x} + f$ where A is a constant matrix, f is a constant vector, and \dot{x} is a time dependent vector. As with scalar differential equations, $\dot{x}(t)$ can be solved by finding the particular and homogenous solutions independently and adding the solution

The easiest of the two solutions is to find $\underset{\sim}{x_p}$. If $\underset{\sim}{x_p}$ is assumed to be a constant vector then $\overset{\cdot}{x_p}=0$. Thus Eq (2.24) becomes

$$\overset{\circ}{\circ} = \overset{\bullet}{\circ} \underset{\circ}{\times}_{p} + \overset{\bullet}{\circ} \tag{2.26}$$

and x_n is easily obtained.

On the other hand, $\underset{\sim}{\times}_h$ is not so easy to find. The homogenous differential equation is

$$\frac{d}{dt}(x_h) = A \times h$$
 (2.27)

rearranging

$$\frac{dx_h}{x_h} = A dt \qquad (2.28)$$

integrating both sides yields

$$\ln (x_h) = A t + c \qquad (2.29)$$

taking the exponent of both sides

$$x_{h} = \exp(At + c) = c \exp(At)$$
 (2.30)

where c is a constant vector related to the initial conditions.

Although this is not a mathematically rigorous argument, it does show how the solution is obtained. The

expression $\exp(\operatorname{At})$ is similar to the scalar exponential in that the expansion is

$$\exp(At) = I + At + \frac{1}{2!} (A t)^2 + \frac{1}{3!} (A t)^3 + \cdots$$
 (2.31)

A, however can be put in the form

$$A = F J F^{-1}$$
 (2.32)

where F is the matrix of eigenvectors of A in column form, and J is a diagonal matrix of the eigenvalues of A. J is said to be in Jordan normal form.

If it is noted that

$$(\underbrace{F}_{n},\underbrace{J}_{n},\underbrace{F}_{n}^{-1})^{n} = (\underbrace{F}_{n},\underbrace{J}_{n},\underbrace{F}_{n}^{-1})(\underbrace{F}_{n},\underbrace{J}_{n},\underbrace{F}_{n}^{-1})\cdots = \underbrace{F}_{n},\underbrace{J}_{n},\underbrace{F}_{n}^{-1}$$
 (2.33)

then

$$\exp(At) = I + F [Jt] F^{-1} + F [\frac{1}{2!} (Jt)^{2}] F^{-1} + F [\frac{1}{3!} (Jt)^{3}] F^{-1}$$

$$= F \exp(Jt) F^{-1}$$
(2.34)

setting $\phi(t) = F \exp(Jt) F^{-1}$, the total solution to the differential equations of motion is

$$\underset{\sim}{\times}(t) = \varrho(t) \subset + \underset{\sim}{\times}_{p}$$
 (2.35)

Therefore, finding the solution to the equations of motion for the case where body A is in a circular orbit can be done by finding the eigenvalues and eigenvectors and solving Eq (2.26).

Floquet Analysis

The solution for a constant coefficient system has been well studied and yields relatively simple results. The system for this problem, however, is one of time-periodic coefficients. The solution for this type of problem was discovered by Floquet in the latter part of the 1800's. The most common uses for Floquet theory is to find the stability of time-periodic systems in celestial dynamics. Few studies, however, deal with finding a solution to the equations of motion.

If we start with the system of time-periodic differential equations

$$\dot{x} = A(t) x \qquad (2.36)$$

where χ is the state vector, $\dot{\chi}$ is the time derivative of the state vector, χ (t) is a periodic matrix with period T. The numerical solution to this problem is only slightly more difficult than the one for constant coefficients in χ ; however, the process is different so a discussion of the procedure is included.

Since we have a linear system, its solution can be described as

$$\chi(t) = \chi(t,0) \chi(t_0)$$
 (2.37)

where the state transition matrix, ϕ , has the initial conditions

$$\dot{\phi}$$
 (t,0) = A(t) ϕ (t,0) (2.38)

$$\phi$$
 (0,0) = 1 (2.39)

where $\underline{\mathbf{I}}$ is the identity matrix.

Floquet theory shows that ϕ can be factored into two matrices ξ and J, such that

$$\phi$$
 (t,0) = F (t) exp(Jt) F⁻¹(0) (2.40)

The matrix J is a constant matrix most conveniently put in Jordan normal form. The diagonal entries of J are the Poincaré exponents which are related to the system eigenvalues. The matrix F is a time periodic matrix with the same period, T, as the original system.

For the constant coefficient system, F would just be the eigenvectors of A. The only difference between the constant coefficient system and the periodic system is that F is periodic in the latter case. Therefore, solving the Floquet problem requires finding the constant matrix F and the periodic matrix F over a single period.

The first step in the Floquet analysis is to find $\phi(T,0)$. This is called the monodromy matrix. The monodromy matrix is usually found by numerically integrating

$$\dot{\varphi}(t,0) = A(t) \cdot \varphi(t,0) \tag{2.41}$$

over one period. Having $\phi(T,0)$ and knowing F(T) = F(0) results in

$$\phi(T,0) = F(0) \exp(Jt) F^{-1}(0)$$
 (2.42)

which can be written as

$$\exp(Jt) = \mathcal{E}^{-1}(0) \phi(T,0) \mathcal{E}(0)$$
 (2.43)

This shows that $\mathcal{E}(0)$ is the matrix of eigenvectors for $\phi(T,0)$.

Also, if λ_i are the eigenvalues of the matrix $\phi(T,0)$. The Poincaré exponents, ω_i , are related to the eigenvalues by the following relationship

The second secon

$$\lambda_{i} = \exp(\omega_{i}T) \tag{2.44}$$

Where the $\boldsymbol{\omega}_{i}$ are the diagonal elements of $\boldsymbol{\Sigma},$ or

$$\omega_{i} = (1/T) \ln (\lambda_{i}) \qquad (2.45)$$

The stability information for the system is now present. If any of the Poincaré exponents have positive real parts, the system is unstable. Since the stability information is all that is usually needed, this is where most Floquet analyses stop. For this study, however, the solution to the equations of motion are desired; therefore, the analysis must continue.

In order to find the complete solution, $\tilde{F}(t)$ must be found. Since it is periodic, $\tilde{F}(t)$ is only needed over the

assessment leaving the second leaves one leaves

first period. By substituting Eq (2.38) into Eq (2.37) and rearranging

$$\dot{F}(t) = A(t) F(t) - F(t) J$$
 (2.46)

where the initial conditions for the equation is just the matrix of eigenvectors. So by integrating this equation over one period the total solution can be found.

The first problem that arises is that F(t) and J_c can be complex, making any real analysis quite difficult. They can, however, be arranged such that both are completely real. F(t) should be arranged in column vectors, f(t), if the eigenvector is completely real, then f(t) will simply be the eigenvector. On the other hand, if there is a pair of complex eigenvectors (they always appear in conjugate pairs), then the columns will be f(t) and f(t) and f(t) im.

The matrix J will no longer be in Jordan normal form, but will be in block diagonal form. Real ω_i 's will remain the diagonal elements of J, but the complex pairs of ω_i 's will be appear in the following diagonal blocks:

$$\begin{bmatrix} Re(\omega) & Im(\omega) \\ -Im(\omega) & Re(\omega) \end{bmatrix}$$
 (2.47)

The matrix $\exp(\int_t t)$ is then replace by the diagonal entries $\exp(\omega_i t)$ for the real ω_i , and the diagonal blocks

$$\exp(\omega_i t) \begin{bmatrix} \cos(\operatorname{Im}(\omega_i)t) & -\sin(\operatorname{Im}(\omega_i)t) \\ \sin(\operatorname{Im}(\omega_i)t) & \cos(\operatorname{Im}(\omega_i)t) \end{bmatrix}$$
 (2.48)

for complex conjugate pairs.

In this problem, it will also be necessary to find $\mathbf{E}^{-1}(t)$ over one period. $\mathbf{E}(t)$ is always invertable; however, an easier method for finding $\mathbf{E}^{-1}(t)$ exists. If the identity $\mathbf{E}\mathbf{E}^{-1} = \mathbf{E}$ is differentiated with respect to time and substituted from Eq. (2.46), the result is

$$\dot{E}^{-1}(t) = -E^{-1}(t) A(t) + JE^{-1}(t)$$
 (2.49)

Since the problem that is being dealt with is periodic, there will be a pair of repeated eigenvectors along the velocity vector of the two body orbit (Wiesel, 1981). Since the columns of F must be independent, another eigenvector must be found. If X is the vector of P_i and P_i of the two body orbit, then the repeated eigenvector, F will be

$$\zeta_{1} = \frac{d\chi}{dt}$$
 (2.50)

and the extended eigenvector $\boldsymbol{\zeta_2}$ will be

$$\zeta_2 = \frac{d\chi}{dE} \tag{2.51}$$

where E is the energy of the orbit.

Now that $\mathcal{E}(0)$ and \mathcal{J} can be formed, Eq (2.46) can now be integrated. By using harmonic analysis, as outlined in Brouwer and Clemence, one can find a closed form expression

for the elements of F. Since F is periodic it can be expressed as

$$F(i,j) = \frac{1}{2} c_0 + c_1 \cos t + c_2 \cos 2t + \cdots + \frac{1}{2} c_n \cos nt + c_2 \sin 2t + \cdots + c_n \sin nt$$
 (2.52)

where

$$c_k = \frac{1}{n} \sum_{j=0}^{2n-1} F(j\alpha) \cos kj\alpha, \quad k = 0,1,2,\dots,n$$
 (2.53)

$$s_k = \frac{1}{n} \sum_{j=1}^{2n-1} F(j\alpha) \sin kj\alpha, \qquad k = 0,1,2,\dots,n-1$$
 (2.54)

and

$$\alpha = 2\pi/2n \tag{2.55}$$

Particular Solution

In order to find the complete solution to the problem a particular solution, in addition the homogenous solution, must be found. Eq (2.24) is in the form

$$\dot{x} = A x + f(t) \tag{2.56}$$

Now, introducing the modal variables, χ , as

then

$$\dot{\chi} = \dot{F}^{-1}(t) \dot{\chi} + F^{-1}(t) \dot{\chi}$$
 (2.58)

substituting Eq (2.57) into Eq(2.58) yields

$$\dot{\chi} = -\bar{E}^{-1}(t)A(t)x + J\bar{E}^{-1}(t)x + \bar{E}^{-1}(t)A(t)x + \bar{E}^{-1}(t)f(t)$$
 (2.59)

Substituting Eq (2.57) into Eq (2.59) and simplifying results in

$$\dot{\chi} = J \chi + F^{-1}(t) f(t)$$
 (2.60)

The term, $\sum_{i=1}^{-1} (t) f_i(t)$, is periodic; therefore, it can be integrated over one period to find the Fourier coefficients as was shown for $f_i(t)$. The solution for $f_i(t)$ can then be easily integrated by hand since it is just a series of sines and cosines.

Conclusion

The geometry of the problem and the equations have been shown. A brief overview of the methodology for solving the equations of motion was then presented. The following chapters will utilize the procedures discussed in order to find the solution to the problem of relative motion of two satellites in neighboring elliptical orbits.

III. Circular Solution

<u>Introduction</u>

This chapter will deal exclusively with the solution for the problem with body A being in a circular orbit. It will first be solved as an autonomous system, and then the results will be compared with the solution obtained by using a Floquet analysis as outlined in the previous chapter.

<u>Autonomous</u> <u>Solution</u>

The elements of the A matrix, R, and θ , for the circular solution will all be constant. Using canonical variables, R, μ , and $\dot{\theta}$ will all be identically equal to one. The resulting equations of motion will be

The first step in finding the exact solution to the circular case is to find the homogenous solution for Eq (3.1). As shown in the previous chapter, this is done by finding the eigenvalues and eigenvectors of the A matrix.

The eigenvalues are found by the equation

$$\det(\lambda \ \underline{I} - \underline{A}) = 0 \tag{3.2}$$

The resulting characteristic equation is

$$\lambda^4 + \lambda^2 = 0 \tag{3.3}$$

Therefore, the eigenvalues are

$$\lambda_{1,2} = 0 \tag{3.4}$$

and

$$\lambda_{3,4} = \pm i \tag{3.5}$$

$$\lambda_{5,6} = + i \qquad (3.6)$$

The eigenvectors are then found by the equation

$$(\lambda_{i} - A) \quad \zeta_{i} = 0 \tag{3.7}$$

For $\lambda_{\underline{i}}$ the resulting eigenvector is

$$\zeta_4 = (0, 1, -1, 0, 0, 0)^T$$
 (3.8)

However, there is no independent eigenvector cooresponding to λ_2 . This vector, termed the generalized vector, can by found using the expression (Reid 1983)

$$(\stackrel{\triangle}{\sim} - \lambda \stackrel{\Sigma}{\sim}) \zeta_2 = \zeta_4 \tag{3.9}$$

This yields

$$\zeta_2 = (\frac{2}{9}, 1, -1, -\frac{1}{9}, 0, 0)^T$$
 (3.10)

The other four eigenvectors occur in complex conjugate pairs. As in the Floquet analysis outlined in chapter 2, the eigenvectors can be broken up into their real and imaginary parts, and J can be put into blocks of sines and cosines.

The pairs of eigenvectors are

$$\zeta_{\mathbf{g}} = \left(\frac{1}{2}i, -\frac{1}{2}, 1, -\frac{1}{2}i, 0, 0\right)^{T}$$
(3.11)

$$\zeta_{m} = (0, 0, 0, 0, 1, i)^{T}$$
 (3.12)

Therefore, the following can be written

$$F = \begin{bmatrix} 0 & 2/3 & 0 & -1/2 & 0 & 0 \\ 1 & 1 & -1/2 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1/3 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3.13)$$

$$\mathbf{F}^{-1} = \begin{bmatrix} -3 & 2 & 1 & -3 & 0 & 0 \\ 3 & 0 & 0 & 3 & 0 & 0 \\ 0 & 2 & 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (3.14)

$$\exp(\mathbf{j}t) = \begin{bmatrix} 1 & t & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos t & \sin t & 0 & 0 & 0 \\ 0 & 0 & -\sin t & \cos t & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos t & \sin t \\ 0 & 0 & 0 & 0 & -\sin t & \cos t \end{bmatrix}$$
(3.15)

Multiplying matrices

$$F_{\sim} \exp(Jt) = \begin{bmatrix} 0 & 2/3 & \frac{1}{2} \sin t & -\frac{1}{2} \cos t & 0 & 0 \\ 1 & t+1 & -\frac{1}{2} \cos t & -\frac{1}{2} \sin t & 0 & 0 \\ -1 & -t-1 & \cos t & \sin t & 0 & 0 \\ 0 & -1/3 & -\frac{1}{2} \sin t & -\frac{1}{2} \cos t & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos t & \sin t \\ 0 & 0 & 0 & -\sin t & \cos t \end{bmatrix}$$

(3.16)

and

$$\phi(t,0) = F \exp(Jt) F^{-1} =$$

2-cos	t	sin	t	sin	t	2-2cos	t	0		0]	
3t-sin	t	2-cos	t	1-cos	t	3t−2sin	t	0		0	
-3t+2sin	t	-2+2cos	t	-1+2cos	t	-3t+4sin	t	o		0	
-1+cos	t	-sin	t	-sin	t	-1+2cos	t	0		0	
0		0		o		0		cos	t	sin t	
0		0		0		0	-sin		t	cos t	
						•				(3.17)

So the above matrix is the ϕ matrix and is the solution to the homogenous set of equations.

Finding the particular solution requires finding the solution to the following matrix equations

$$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix} \times_{p} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$(3.18)$$

Resulting in

$$x_{p} = (0, 1, -1, 1, 0, 0)^{T}$$
 (3.19)

Putting the homogeneous and particular solutions together yields an equation in the following form.

$$x(t) = \phi(t,t_0) c(t_0) + x_p$$
 (3.20)

Therefore, the next step in finding the total solution is to find the constant vector $c(t_0)$. Evaluating Eq (3.20) at time equal to zero results in

$$x(0) = \phi(0,0) \in (0) + x_0$$
 (3.21)

Since $\phi(0,0)$ is the identity matrix

$$c_{\infty}(0) = c_{\infty}(0) - c_{\infty}(0)$$
 (3.22)

Recalling Eqs (2.11), (2.12) and (2.13) for body A in a circular orbit yields the following

$$\chi(t) = \begin{cases}
x \\
\dot{x} - y \\
y \\
\dot{y} + x + 1
\end{cases}$$
(3.23)

Evaluating for time equal to zero and substituting into Eq (3.22) yields.

Multiplying out Eq (3.20) with the given results for $\phi(t,0)$, c(0), and x_p directly yield the following equations for the position of body B with respect to A in the original coordinate system referred to in Figure 1.

$$x(t) = 4 x_0 - (3 x_0 + 2 y_0) \cos t + x_0 \sin t + 2 y_0 (3.25)$$

$$y(t) = (6 \times_{o} + 4 \dot{y}_{o}) \sin t + 2 \dot{x}_{o} \cos t$$

$$- (6 \times_{o} + 3 \dot{y}_{o}) t - 2 \dot{x}_{o} + y_{o}$$
 (3.26)

$$z(t) = z_0 \cos t + z_0 \sin t$$
 (3.27)

The equations of motion that have been derived do not directly give equations for the velocities, or dot terms.

Eq (3.20) gives the equations for the momenta terms, and the velocity equations can then be found. The equations for the momenta are

$$p_{x}(t) = \dot{x}(t) - y(t)$$

$$= - (3x_{o} + 2\dot{y}_{o}) \sin t - \dot{x}_{o} \cos t$$

$$+ (6x_{o} + 3\dot{y}_{o}) t + 2\dot{x}_{o} - \dot{y}_{o}$$
 (3.28)

$$p_{y}(t) = y + x + 1$$

$$= -\dot{x}_{o} \sin t + (3x_{o} + 2\dot{y}_{o}) \cos t$$

$$-2x_{o} - \dot{y}_{o} + 1 \qquad (3.29)$$

$$p_z(t) = \dot{z}(t) = -z_0 \sin t + \dot{z}_0 \cos t$$
 (3.30)

Therefore, the solutions for the velocity components are

$$\dot{x}(t) = 3 x_0 + 2 \dot{y}_0 + \dot{x}_0 \cos t$$
 (3.31)

$$\dot{y}(t) = -2x_0 \sin t + (6x_0 + 4\dot{y}_0) \cos t - 6x_0 - 3\dot{y}_0$$
 (3.32)

$$\dot{z}(t) = -z_0 \sin t + \dot{z}_0 \cos t$$
 (3.33)

. These equations are the same as derived in Kaplan.

Kaplan, however, derived the equations using Newtonian mechanics, whereas the derivation here is using Hamilton's equations.

Circular Solution Using Floquet Theory

The exact solution derived above should yield the same results as Floquet theory. Briefly, Floquet theory consists of the following steps

- 1. The ϕ matrix will be integrated over one period.
- 2. The $\mathbb R$ and $\mathbb J$ matrices will be found at time equal to zero using the eigenvectors and Poincaré exponents evaluated from ϕ at one period.
- 3. $\sum_{i=1}^{n}$ will be integrated over one orbit. Since it is periodic, the results are valid for all time.
- 4. The fourier coefficients for the individual terms in F are found.
- 5. The solution for the permatrix for all time is now available and the solution can be found using the initial conditions the same as was done for the Hamiltonian derivation.

Integrating ϕ over one period yields the following matrix

THE PROPERTY OF THE PROPERTY O

Finding the eigenvalues for this matrix is not extremely difficult, $\lambda_{i-\delta}$ are all one. Finding the appropriate eigenvectors is not quite so easy. The first problem that arises is the that IMSL subroutine eigrf can not handle the problem. Due to the six repeated eigenvalues, IMSL only finds three independent eigenvectors. One is a vector along the velocity of body A as expected, and the other two that it finds are for the out of plane motion. They are

$$(0, 1, -1, 0, 0, 0)^T$$

It has already been shown that one of the eigenvectors will be

$$\zeta_2 = \frac{d\chi}{dE} \tag{3.34}$$

where E is the energy of the orbit and χ is the position vector of body A with respect the center of the Earth evaluated at time equal to zero or any integer multiple of the period. The vector χ , in the coordinates being used, is

$$\chi = (R_0, 0, 0, v_0, 0, 0)$$
 (3.35)

where v is the linear velocity of body A. Therefore, the eigenvector will be

$$\zeta = (\frac{dR}{dE}, 0, 0, \frac{dv}{dE}, 0, 0)$$
(3.36)

First R and \vee must be found as a function of E. Starting with

$$E = (v_0^2 / 2) - (\mu / R_0)$$
 (3.35)

and

$$v_0 = (\mu / R_0)^{1/2}$$
 (3.36)

Substituting Eq (3.36) into Eq (3.35) yields

$$R_{o} = -\frac{\mu}{2E} \tag{3.37}$$

also

$$v_0 = (-2E)^{1/2}$$
 (3.38)

Taking the derivative of Eqs (3.37) and (3.38) with respect to E yields the eigenvector

$$\zeta_2 = \left(\frac{\mu}{2E^2}, 0, 0, -(-2E)^{-1/2}, 0, 0\right)^T$$
 (3.39)

Since canonical units are being used, a = 1 , μ = 1 , and E = -1/2 . Therefore,

$$\zeta_2 = (2, 0, 0, -1, 0, 0)^T$$
 (3.40)

Four of the eigenvectors have now been found; however, two more are still needed. Finding them by hand turns out to be fairly simple due to the number of zeros present in ϕ .

$$\zeta_4 = (1, 0, 0, -1, 0, 0)^T$$
 (3.42)

Putting all the eigenvectors together gives the following

$$F(0) = \begin{bmatrix} 0 & 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.43)

al so

$$F^{-1}(0) = \begin{bmatrix} 0 & 0 & -1/3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.44)

Since all the eigenvalues are equal to one, all the Poincaré exponents are zero. This means that the $\mathbb Z$ matrix will be zero, except an off diagonal one due to the generalized eigenvector (ζ_2) . Therefore,

$$\mathbf{J} = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
(3.45)

and

$$\exp(\mathbf{Jt}) = \begin{bmatrix} 1 & \mathbf{t} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.46)

Now everything has been found that is needed to find F(t). With F(0) as the initial conditions, F(t) was integrated over one orbit. It turned out, however, that the chosen eigenvectors were not periodic. Instead of returning to their original values, the following matrix resulted

$$F(T) = \begin{bmatrix} 0 & 2 & 0 & 1 & 0 & 0 \\ 1 & 12.6 & 1 & 0 & 0 & 0 \\ -1 & -12.6 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.47)

Since $F(0) \neq F(T)$, this is not a periodic combination of eigenvectors. However, due to the fact that all the Poincaré exponents are zero, any linear combination of the

eigenvectors is still an eigenvector. Therefore, some linear combination of the first two eigenvectors must be found to make the set of eigenvectors a periodic one.

Evaluating the time derivative of $\overset{\sim}{\sim}$ at zero results in the following

$$\dot{F}(0) = AF(0) - F(0) J = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 & 0 \\ 0 & -2 & 0 & -2 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$
(3.48)

What was done to solve this problem was to find a set of eigenvectors that make the time derivatives of the second and third row of the second column equal to zero at time equal to zero.

The first thing that was attempted was to add a multiple of ζ_4 to ζ_2 . If

$$F(0) = \begin{bmatrix} 0 & 2 & 0 & 1 & 0 & 0 \\ 1 & \alpha & 1 & 0 & 0 & 0 \\ -1 & -\alpha & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(3.50)$$

then

$$\mathbf{A} \ \mathbf{F}(0) \ - \ \mathbf{F}(0) \mathbf{J} = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 1 & 0 & 0 \\
0 & -3 & 0 & -2 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & 0
\end{bmatrix} - \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Adding the two matrices in this manner did not have the desired affect. The next thing that was tried was to just have a multiple of ζ_1 . The eigenvalue matrix at zero will be

$$F(0) = \begin{bmatrix} 0 & 2 & 0 & 1 & 0 & 0 \\ \alpha & 0 & 1 & 0 & 0 & 0 \\ -\alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.52)

and

$$\frac{A}{A} E(0) - E(0) J = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 1 & 0 & 0 \\
0 & -3 & 0 & -2 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix} - \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & 0 \\
0 & -\alpha & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
(3.53)

It is easy to see that if $\alpha \approx 3$, then $\dot{E}(0)$ will be zero in the desired positions.

The eigenvector matrix

$$F(0) = \begin{bmatrix} 0 & 2 & 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 & 0 \\ -3 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.54)

and

$$\mathbf{F}^{-1}(0) = \begin{bmatrix} 0 & 0 & 0 & -1/3 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.55)

was integrated around one orbit and was periodic.

The next step was to find the Fourier coefficients as described in Chapter 2. The results of the harmonic analysis showed that each element of the F matrix could then be expressed as a function of time in the following manner

$$F(t) = \begin{bmatrix} 0 & 2 & \sin t & \cos t & 0 & 0 \\ 3 & 0 & 2-\cos t & \sin t & 0 & 0 \\ -3 & 0 & -2+2\cos t & -2\sin t & 0 & 0 \\ 0 & -1 & -\sin t & -\cos t & 0 & 0 \\ 0 & 0 & 0 & \cos t \sin t \\ 0 & 0 & 0 & -\sin t \cos t \end{bmatrix}$$
(3.56)

Note that these numbers are really accurate to ten significant digits. The trailing zeros were left off to make the matrices easier to read.

$$\exp(\mathbf{Jt}) = \begin{bmatrix} 1 & \mathbf{t} & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.57)

Therefore, to find $\phi(t)$

$$F(t) \exp(Jt) = \begin{bmatrix} 0 & 2 & \sin t & \cos t & 0 & 0 \\ 3 & 3t & 2-\cos t & \sin t & 0 & 0 \\ -3 & -3t & -2+2\cos t & -2\sin t & 0 & 0 \\ 0 & -1 & -\sin t & -\cos t & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos t \sin t \\ 0 & 0 & 0 & 0 & -\sin t \cos t \end{bmatrix}$$

$$(3.58)$$

Recalling that

$$\mathbf{F}^{-1}(0) = \begin{bmatrix}
0 & 0 & -1/3 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$
(3.59)

 $\phi(t,0) = F(t) \exp(Jt) F^{-1}(0) =$

2-cos	t	sin	t	sin	t	2-2c os	t	0		O	1
3t-sin	t	2-cos	t	1-cos	t	3t-2sin	t	0		o	
-3t+2sin	t	-2+2cos	t	-1+2cos	t	-3t+4sin	t	0		Ō	1
-1+cos	t	-sin	t	-sin	t	-1+2cos	t	0		0	
0		o		0		0		cos	t	sin	t
[0		o		0		0	•	-sin	t	cos	ŧ
										(3.	60)

As expected, this $\phi(t,0)$ is identical (within tensignificant digits) to the one for the exact solution. From here on the total solution can be found from Eq (3.20) in the same manner as the exact solution. Due to redundancy this will not be shown. However, the total solution will result in the same solution because $\phi(t,0)$ is the same for both approaches.

Conclusion

the case of a circular orbit.

The solution to the equations of motion for the circular case are not new. The main purpose for finding this solution was to help verify the computer programs that were used. Since the two solutions are identical, it shows that the numerical approach that was used was correct for

IV. Elliptical Solution

Introduction

The procedure for finding a numerical solution to the elliptical problem is identical to finding the numerical solution for the circular case. The goal, however, is to find the relative motion solution as a function of eccentricity. This will be done by finding the solution for slightly eccentric orbits. For very small eccentricities (ie. $e = 10^{-7}$) only the linear terms of e will appear. After finding the dependence on e, larger values for the eccentricities will be used to find the equations' dependence on e^2 and e^3 .

 $\phi(T,0)$ is found in the same manner as for the circular case. $\dot{\phi}=\dot{A}\,\dot{\phi}$ is numerically integrated over one period. For all eccentricities, $\phi(T,0)$ appears in the following form

$$\phi(T,0) =
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
A & 1 & 0 & B & 0 & 0 \\
C & 0 & 1 & D & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}$$
(4.1)

Where A,B,C,D are some value.

The eigenvalues, as in the circular case, are all of magnitude equal to one; therefore, all of the Poincaré exponents are zero.

As with the circular case, IMSL cannot find distinct eigenvectors to the matrix; however, it is not too difficult to find the eigenvectors by hand due to the abundance of zeros in the matrix.

Four of the eigenvectors are easy to determine. They are

$$\zeta_3 = (0, 1, 0, 0, 0, 0)^T$$
 (4.3)

$$\zeta_4 = (1, 0, 0, -A/B, 0, 0)^T$$
 (4.4)

$$\zeta_5 = (0, 0, 0, 0, 1, 0)^T$$
 (4.5)

$$\zeta_{co} = (0, 0, 0, 0, 0, 1)^{T}$$
 (4.6)

TO SECURE AND ASSOCIATION OF THE PROPERTY AND ASSOCIATION OF THE PROPERTY OF T

and, as shown in Chapter 2, there is a repeated eigenvector and its corresponding extended eigenvector. Recalling

$$\zeta_{i} = \frac{dX}{dt}$$
 (4.7)

and

$$\zeta_2 = \frac{d\chi}{dE} \tag{4.8}$$

the last two eigenvectors can be found. The repeated vector will be

$$\zeta_{1} = (0, \mu/R_{0}^{2}, v_{0}, 0, 0, 0)$$
 (4.9)

Where the zero subscript denotes time equal to zero. Using canonical units

$$\mu/R^2 = 1/(1-e)^2$$
 (4.10)

From Kaplan (1976)

$$e = (R_0 v_0^2 / \mu) - 1 (4.11)$$

Which leads to

$$v_0 = [(\mu/R_0) (e + 1)]^{1/2}$$
 (4.12)

thus

$$v_0 = [(e + 1)/(e - 1)]^{1/2}$$
 (4.13)

Now only the second eigenvector needs to be found. Recalling Eq. (3.35)

$$E = (v_0^2 / 2) - (\mu / R_0)$$
 (4.14)

Substituting for v_o and solving for R_o results in

$$R_o = (e - 1)/2E$$
 (4.15)

thus

$$dR_{0}/dE = \frac{1 - e}{2 E^{2}}$$
 (4.16)

However, for canonical units the semimajor axis, a, will be equal to one, and E=-1/2 . Thus,

$$dR_0/dE = 2 (1 - e)$$
 (4.17)

Now, in order to find dv /dE, start with

$$v_0 = [(\mu/R_0) (e + 1)]^{1/2}$$
 (4.18)

Using the chain rule

$$dv_{o}/dE = (\delta v_{o}/\delta R_{o}) (\delta R_{o}/dE)$$

$$= \sim (1/4) [(1 + e)/R_{o}^{3}]^{1/2} (1 - e) / 2E^{2}$$
(4.19)

simplifying,

$$dv_0/dE = -[(1 + e)/(1 - e)]^{1/2}$$
 (4.20)

Since the eigenvectors have all been found, the matrix F(0) will be

$$F(0) = \begin{bmatrix} 0 & 2(1-e) & 0 & 1 & 0 & 0 \\ \frac{1}{(1-e)^2} & 0 & 1 & 0 & 0 & 0 \\ \frac{1}{(1-e)^2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{1-e} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\left[\frac{1+e}{1-e}\right]^{1/2} & 0 & -A/B & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.21)

The next step is to integrate ξ over one period. This was done to the matrix above and, as in the circular case, it was not periodic. The method for making ξ periodic for the circular solution was to make the second column of the second and third rows of $\dot{\xi}$ equal to zero by using a multiple of the first eigenvalue. However, there is no constant that will make this happen. Nevertheless, if the first eigenvector is multiplied by three as before, then

$$F(0) = \begin{bmatrix} 0 & 2(1-e) & 0 & 1 & 0 & 0 \\ \frac{3}{(1-e)^2} & 0 & 1 & 0 & 0 & 0 \\ 3\left[\frac{1+e}{1-e}\right]^{4/2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\left[\frac{1+e}{1-e}\right]^{4/2} & 0 & -A/B & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.22)

$$\dot{F}(3,2) = 0$$
 (4.23)

and

$$\dot{E}(2,2) = -e/(1-e)^2$$
 (4.34)

For the case where e = 0, Eq (4.34) reduces to zero.

This method was tried and resulted in a periodic function for F(t). Fifty values of F were saved along equal increments of time during one period and the Fourier coefficients were found as discussed in Chapter 2.

Table 4.1 lists the eccentricities and the calculated values for the Fourier coefficients of the first column of the first row of F(t).

Table 4.1

FOI	urier coettic	lents for r	(1,1)
e	5	. 52	5 9
.0000001	000000300	*	*
.0000010	000003000	*	*
.0000100	000030000	*	*
.0001000	000300000	*	*
.0005000	001500000	000000750	*
.0008000	002399999	000001920	000000002
.0010000	002999999	000003000	000000003
.0050000	014999859	000074999	000000422
.0080000	023999424	000191992	000001728
.0100000	029998874	000299980	000003375
.0200000	059990999	001199680	000026990
.0300000	089969627	002698380	000091048
s = -3e +	1.125e ²		

$$s_1 = -3e + 1.125e^2$$

$$s_2 = -3e^2$$

where the stars indicate zero to nine significant digits.

For $e=10^{-7}$, one can see the linear dependence on e. As the eccentricity increases, the square and cubic are no longer negligible and can be extracted from the data. The resulting equation for $\mathbb{F}(1,1)$ as a function of both eccentricity and time is

$$F(1,1) = (-3e + 1.125e^2) \sin t - 3e^2 \sin 2t$$
 (4.35)
- 3.375e³ sin 3t

The rest of the data to determine the coefficients for the other elements of F(t) is in Appendix B. The resulting equations for the rest of the elements of F(t) are as follows:

$$F(1,2) = 2 + e^2 + [-2e + (3/4)e^3] \cos t - e^2 \cos 2t$$

- (3/4)e³ cos 3t

$$F(1,3) = [1 - 2e + (5/8)e^{2} + .75e^{3}] \sin t$$

$$+ [e - 2e^{2} + (1/3)e^{3}] \sin 2t$$

$$+ [(9/8)e^{2} - 2.25e^{3}] \sin 3t + (4/3)e^{3} \sin 4t$$

$$F(1,4) = -e + [1 - (9/8)e^{2}] \cos t + [e - (4/3)e^{3}) \cos 2t$$

$$+ (9/8)e^{2} \cos 3t - (4/3) \cos 4t$$

$$F(1,5) = F(1,6) = 0$$

$$F(2,1) = 3 + 1.5e^{2} + (6e + 2.25e^{3}) \cos t + 7.5e^{2} \cos 2t + 9.75e^{3} \cos 3t$$

$$F(2,2) = (-e + .38e^3) \sin t - e^2 \sin 2t - (9/8)e^3 \sin 3t$$

$$F(2,3) = 2 - 2.5e + e^2 - .87e^3 + (-1 + 4e + 3.875e^2 - 1.5e^3) \cos t + (-1.5e + 5e^2 + 4.16e^3) \cos 2t - (2.12e^2 + 5.8e^3) \cos 3t + 3e^3 \cos 4t$$

$$F(2,4) = [1 - (3/8)e^2] \sin t + (1.5e - e^3) \sin 2t + 2.215e^2 \sin 3t - 2.96e^3 \sin 4t$$

$$F(2,5) = F(2,6) = 0$$

$$F(3,1) = -3 + 1.5e^{2} + (-3e + 1.875e^{3}) \cos t - 3e^{2} \cos 2t$$

- 3.375e³ cos 3t

$$F(3,2) = 0$$

$$F(3,3) = -2 + .5e + e^2 - .25e^3 + (2 - 2e - .5e^2 + 1.244e^3)$$

$$\cos t + (1.5e - 2e^2 - .4e^3) \cos 2t$$

$$+ (1.5e^2 - 2.25e^3) \cos 3t$$

$$F(3,4) = (-2 + .5e^2) \sin t + (-1.5e + 1.08e^3) \sin 2t$$

- 1.5e² sin 3t - (5/3)e³ sin 4t

$$F(3,5) = F(3,6) = F(4,1) = 0$$

$$F(4,2) = -1 + .5e^2 + [-e + (5/8)e^3] \cos t - e^2 \cos 2t + (9/8)e^3 \cos 3t$$

$$F(4,3) = [-1 + (7/8)e^{2}] \sin t + [-e + (7/6)e^{3}] \sin 2t$$

- (9/8)e² sin 3t + (4.3)e³ sin 4t

$$F(4,4) = [-1 - (3/8)e^2) \cos t + [-e - (1/6)e^3] \cos 2t$$

- $(9/8)e^2 \cos 3t - (4/3)e^3 \cos 4t$

$$\mathcal{E}(4,5) = \mathcal{E}(4,6) = \mathcal{E}(5,1) = \mathcal{E}(5,2) = \mathcal{E}(5,3) = \mathcal{E}(5,4) = 0$$

CONTRACT CONTRACT CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

$$F(5,5) = -1.5e - 1.5e^{2} - 1.5e^{3} + [1 + e + (5/8)e^{2} + (5/8)e^{3}]$$

$$cos t + (.5e + .5e^{2} + .168e^{3}) cos 2t$$

$$+ [(3/8)e^{2} + (3/8)e^{3}] cos 3t + (1/3)e^{3} cos 4t$$

$$F(5,6) = [1 - e - (1/8)e^{2} + (1/8)e^{3}] sin t + (.5e - .5e^{2} - .165e^{3}) sin 2t + [(3/8)e^{2} - (3/8)e^{3}] sin 3t$$

$$+ (1/3)e^{3} sin 4t$$

$$F(6,1) = F(6,2) = F(6,3) = F(6,4) = 0$$

$$F(6,5) = [-1 - e - (5/8)e^{2} - (5/8)e^{3}] sin t$$

$$+ [-e - e^{2} - (1/3)e^{3}] sin 2t$$

$$+ (-1.125e^{2} - 1.125e^{3}) sin 3t - 1.35e^{3} sin 4t$$

$$F(6,6) = 1 - e - (1/8)e^{2} + (1/8)e^{3} + [e - e^{2} - (1/3)e^{3}]cos t$$

$$+ [(9/8)e^{2} + (9/8)e^{3}] cos 3t + (4/3)e^{3} cos 4t$$

$$(4.36)$$

Since F(t) has been found, finding $\phi(t,0)$ is now relatively simple. As in the circular solution

$$exp(Jt) = \begin{bmatrix} 1 & t & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(4.37)$$

Finding the solution for $\sum_{i=1}^{-1} (0)$ is tedious, but relatively simple. It will be a matrix in the form

$$\mathbf{F}^{-1}(\mathbf{t}) = \begin{bmatrix} 0 & 0 & 1/b & 0 & 0 & 0 \\ (1-f)/c & 1 & 0 & -g/c & 0 & 0 \\ 0 & 1 & -a/b & 0 & 0 & 0 \\ f & 0 & 0 & g & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} (4.38)$$

where

$$a = 3/(1 - e)^{2}$$

$$b = -3 [(1 + e)/(1 - e)]^{1/2}$$

$$c = 2 (1 - e)$$

$$d = -[(1 + e)/(1 - e)]^{1/2}$$

$$e = -A/B (from Eq (4.1))$$

$$f = -d/(ec - d)$$

$$q = c/(ec - d)$$
(4.39)

The total solution for $\phi(t,0)$ can now be expressed in terms of eccentricity cubed by the following matrix multiplication

$$\phi(t,0) = F(t) \exp(Jt) F^{-1}(0)$$
 (4.40)

Combining Eqs (4.36), (4.37), and (4.38) the homogenous solution for $\dot{x} = A(t) \dot{x}$ is now determined as an expansion of eccentricity in Eq (4.40).

The second secon

Particular solution

The complete solution for the relative motion is almost complete. All that is needed is the particular solution. Recalling Eq (2.59)

$$\dot{\chi} = J \chi + E^{-1}(t) f(t)$$
 (4.41)

Since $\sum_{i=1}^{n-1} (t) f_i(t)$ is periodic it was integrated and the Fourier coefficients were found as done for $\sum_{i=1}^{n} (t) f_i(t)$. The solution for $f_i(t)$ is then easy to integrate by hand and results in the following:

$$y(1) = K_{1} + K_{2} + [-1 + (2/3)e - (1/3)e^{2} + .5e^{3}] t$$

$$+ [(4/3) - (8/3) + (7/6)e^{2} + (1/3)e^{3}] \sin t$$

$$+ [e - (11/6)e^{2} + .4125e^{3}] \sin 2t$$

$$+ [(9.43)e^{2} -1.5e^{3}] \sin 3t + e^{3} \sin 4t$$

$$\chi(2) = K_2$$

$$\chi(3) = K_3 + (-e - .75e^2)$$
 t + $(-2 - 1.75e^2)$ sin t + $(-(3/2)e - (2/3)e^3]$ sin 2t - $(17/12)e^2$ sin 3t - $1.48e^3$ sin 4t

$$\chi(4) = K_4 - (2 - 2.75e^2) \cos t - [(3/2)e - 2.4125e^3) \cos 2t$$

$$- (17/12)e^2 \cos 3t - 1.48e^3 \cos 4t$$

$$\chi(5) = \chi(6) = 0$$
 (4.42)

Since the particular solution can be any function—that satisfies the differential equation, any initial value for y

will be valid; however, $\chi(0)=0$ leads to easier expressions. This can be done by setting $K_{1-3}=0$ and

$$K_{\perp} = 2 + (3/2)e + (4/3)e^{2} + 0.9325e^{3}$$
 (4.43)

Now $\chi(t)$ has been found, the particular solution is

$$\underset{p}{\times} = \underset{\sim}{\mathsf{F}}(\mathsf{t}) \; \chi(\mathsf{t}) \tag{4.44}$$

where F(t) is expressed in Eq (4.36) and $\chi(t)$ in Eq(4.42)

Complete solution

Recalling Eq (2.35),

however, since $\chi(0) = 0$

$$\stackrel{\sim}{\sim} = \underset{\sim}{\times}_{0} \tag{4.46}$$

and Eq (4.45) can be written

$$x(t) = \phi(t,0) \times_{0} + x_{p}$$
 (4.47)

where $\phi(t,0)$ is expressed in Eq (4.40), \times_0 in Eq (3.23), and \times_0 in Eq (4.44)

Conclusion

Using the expressions derived in this chapter, the solution to the equations of motion can be expressed as a function of eccentricity and time. The results reduce to the circular solution, but the actual equations for the elliptical solution are rather complicated to write out in an expanded form.

V. Conclusion

An expression for the solution to the relative motion problem has been found. Although this solution is limited to small eccentricities (the error is approximately e³), it has wide applications. It could be applied to traffic management around the space station, Shuttle activities, or any other application that utilizes orbits of small eccentricities.

These equations of motion are an improvement over previous methods. They are not limited to body A being in a circular orbit as in some previous studies. The results are valid even at very close distances, which is a weakness of the methods based on subtracting the two position vectors.

This analysis also has the advantage of being able to calculate the necessary changes in velocity for rendezvous. If we recall the basic solution to the equation of motion

$$\chi(t) = \phi(t,0) \chi_0 + \chi_0$$
 (5.1)

The values of $\chi(t,0)$, χ_0 , and χ_p have previously been found. For the rendezvous problem, the initial and final times are known. Also, the initial position is known, and the final position is simply zero for the three different directions. The only values that are not known are the initial and final velocities. This results in a system of six

equations and six unknowns. These are not difficult to solve since all the other values are constants.

One difficulty in using this solution occurs when the desired initial time is not at perigee, but at some time, t_0 . This problem can be overcome by using the fact that

Finding the required solution, therefore, requires solving Eq (5.2).

There are two limitations to this solution. The first is that the relative distances between the two bodies must be small. The second limitation is that the solution is for small eccentricities. Equations for greater eccentricities can be found using the same approach as this thesis. This could be done with the same computer code, finding the dependence on higher orders of eccentricity.

Utilization of these equations yield themselves best to computer analysis since they are relatively lengthy expressions. The equations being somewhat unwieldy are only a minor inconvenience. One must remember, however, that the equations are in canonical units.

Appendix A: Explanation of Computer Code

the section of the se

Introduction

This appendix is meant to describe the code that was used for this thesis. Hopefully, this will make it easier to understand the numerical processes used.

Computer Code

The main programs were relatively simple. Their purpose was to initialize some of the parameters, mainly eccentricity, and call the numerical integrator. There were actually three main programs. The first integrated the ϕ matrix over one orbit and its output was just $\phi(T,0)$. The second integrated the ξ matrix over one period and its output was the values of the ξ matrix for fifty evenly spaced time intervals over one period. The last integrated ξ^{-1} over one period and the output was fifty evenly spaced values of ξ^{-1} f(t), where f(t) is the forcing function.

The numeric integrator that was used was Haming. It is a fourth order predictor-corrector capable of integrating systems of first order differential equations. Using it entails forming a subroutine called "rhs," where rhs calculates the right hand side of the equations of motion.

2000 P

The position of body A was necessary in the subroutine rhs, so it was calculated using a Newton-Raphson method to find Kepler's equation.

The fourier coefficients were found using the approach defined in chapter 2.

Appendix B: Data From Harmonic Analyses

Table B.1 Fourier Coefficients for F(1,2)

ę	c o	C ₁	C 2	C
.0000001	2.00000000	000000200	*	*
.0000010	2.00000000	000002000	*	*
.0000100	2.00000000	000020000	*	*
.0001000	2.00000001	000200000	000000010	*
.0005000	2.00000025	001000000	000000250	*
.0008000	2.00000064	001600000	000000640	*
.0010000	2.00000100	002000000	000001000	*
.0050000	2.00002500	009999906	000025000	000000094
.0080000	2.00006400	015999616	000063997	000000384
.0100000	2.00010000	019999249	000099994	000000750
.0200000	2.00040000	039994000	000399894	000005998
.0300000	2.00090000	059979751	000899460	000020233
	2			

 $c_1 = -2e + (3/4)e^3$

 $c_{g} = -(3/4)e^{9}$

Table B.2 Fourier Coefficients for F(1,3)

S 1	5 2	5 9	5 4
.99999800	.000000010	*	*
.999998000	.000000100	*	*
.999980000	.000001000	*	*
.999800006	.000099980	.000000011	*
.999000016	.000499500	.000000281	*
.998400400	.000798720	.000000719	*
.998000626	.000998000	.000001123	.000000001
.990015719	.004950042	.000027844	.000000165
.984040383	.007872176	.000070848	.000000672
.980063246	.009800347	.000110251	.000001307
.960255944	.019202878	.000432018	.000010239
.940582466	.028210067	.000951858	.000033836
	1 .99999800 .99998000 .99980006 .99900016 .998400400 .998000626 .990015719 .984040383 .980063246 .960255944	.99999800 .00000010 .99998000 .00000100 .999980000 .000001000 .999800006 .000099980 .99900016 .000499500 .998400400 .000798720 .998000626 .000998000 .990015719 .004950042 .984040383 .007872176 .980063246 .009800347 .960255944 .019202878	1 2 9 .999999800 .000000100 * .999998000 .000001000 * .999800006 .000099980 .000000011 .99900016 .000499500 .000000281 .998400400 .000798720 .000000719 .998000626 .000998000 .000001123 .990015719 .004950042 .000027844 .984040383 .007872176 .000070848 .980063246 .009800347 .000110251 .960255944 .019202878 .000432018

 $s_1 = 1 - 2e + (5/8) e^2 + (3/4)e^9$

 $s_{2} = e - 2e^{2} + (1/3)e^{3}$ $s_{3} = (9/8)e^{2} - 2.25 e^{3}$

 $s_4 = (4/3)e^9$

Table B.3 Fourier Coefficient for F(1,4)

	50				
a	CO	C 1	C 2		•
.0000001	000000100	1.00000000	.0000000100	*	*
.0000010	0000001000	1.0000000	. 0000001000	*	*
.0000100	-,000010000	1.00000000	.000010000	*	*
.0001000	000100000	1.00000000	.000100000	. 000000000	*
.0005000	00050000-	0.9999997	.00020000	.000000281	*
. 000B000	0000B0000	0.999993	00000080000	.000000720	*
.0010000	-,001000000	0.9999989	666666000.	.000001125	.000000000
. 0050000	005000000	0.9999719	.004999833	.000028124	.000000167
00008000	008000000	0.9999280	.007999317	.0000071993	.0000000683
. 0100000	010000000	0.9998875	.009998867	.000112482	.000001333
. 0200000	020000000	0.9995502	.019989335	.000449719	.000010659
.0300000	030000000	0.9989876	.029964009	.001011077	.000035942
- E					
n = 1	- 1.125e²				
+ a " "	$e + (4/3)e^2$				
$c_{\rm c} = 1.125e^2$	5e²				
c_ = -(4/3)e	3) e ³				
P					

Table B.4 Fourier Coefficient for F(2,1)

е	c o	C 1	C 2	^C 9
.0000001	3.00000000	.00000060	*	*
.0000010	3.00000000	.00000600	*	*
.0000100	3.00000000	.00006000	*	*
.0001000	3.00000002	.00060000	.000000075	*
.0005000	3.00000038	.00300000	.000001875	.000000001
.0008000	3.00000096	.00480000	.000004800	.000000005
.0010000	3.00000150	.00600000	.000007500	.000000010
.0050000	3.00003750	.03000028	.000187500	.000001219
.0080000	3.00009600	.04800115	.000480004	.000004992
.0100000	3.00015001	.06000225	.000750010	.000009750
.0200000	3.00060018	.12001800	.003000160	.000077996
.0300000	3.00135091	.18006080	.006750811	.000263222
	2			

 $c_0 = 3 + 1.5e^2$

 $c_1 = 6e + 2.25 e^3$

 $c_2 = 7.5e^2$

c = 9.75e³

Table B.5 Fourier Coefficients for F(2,2)

	······································	
5 1	5 2	S 3
- 000000100	*	*
	*	*
000010000	*	*
000100000	000000010	*
000500000	000000250	*
000800000	000000640	*
001000000	000001000	000000001
004999953	000025000	000000141
007999808	000063997	000000576
009999620	000099992	000001124
019996997	000399894	000008997
029989877	000899461	000030350
	00000100 00001000 00010000 000100000 000500000 001000000 001999953 00799988 007999697	000000100

 $s_1 = -e + .38e^9$

s = -e2

s = -1.125e⁹

Table B.6 Fourier Coefficient for F(2,3)

STREET, SECONDS STREET, STATIST CONTROL SESSESSED LANG

Separation of the second secon

y	*	*	*	*	*	- 000000000	000000003	- 000000364	000001480	000002873	000022310	00007304B						
e G	*	*	*	000000021	-,000000530	000001357	000002119	000052315	000132691	000206046	000798741	040611974 001740759						
C 2	-,000000150	000001500	-,000015000	000149950	998000969 000748751	001196802	001495004	007375520	011682131	014504160	028033229							
C	999998600 000000150	999996000	999960000	~. 999600039		996802479	996003874	980096688	968247237	960386013	921538203	.92587697883448018	.87e³	+ 1.5e³	.6e³			
0	1.9999975	1.99999750	1.99997500	1.99975001	1.99875025	1.99800064	1.99750100	1.98752489	1.98006356	1.97519913	1.95039312	1.92587697	2.5e + e ²	$-1 + 4e + 3.875e^2 +$	$-1.5e + 5e^2 + 4.16e$	2.12e ² + 5.8e ³		!
a	.0000001	.0000010	.00000100	.0001000	.0005000	0008000	.0010000	.0050000	00008000	.0100000	.0200000	.0300000	C ₀ = 2 - 2	H	c_ = -1.5e	c = 2.12e	3 -3e3	*

Table B.7 Fourier Coefficient for F(2,4)

e	50	S ₁	S 2	S 9
.0000001	1.000000000	.000000150	*	*
.0000010	1.000000000	.000001500	*	*
.0000100	1.000000000	.000050000	*	*
.0001000	.999999996	.000150000	.000000021	*
.0005000	.999999906	.000750000	.000000531	*
.0008000	.999999760	.001200000	.000001360	.000000002
.0010000	.999999625	.001499999	.000002125	.000000003
.0050000	.999990625	.007499885	.000053129	.000000370
.0080000	.999976000	.011999531	.000135993	.000001515
.0100000	.999962500	.014999084	.000212482	.000002958
.0200000	.999849996	.029992666	.000849711	.000023656
.0300000	.999662488	.044975252	.001911039	.000079808

Table B.8 Fourier Coefficient for F(3,1)

3		Fourier Co	Table B.7 Defficient fo	or F(2,4)	
	е	So	S ₁	S 2	5 9
	.0000001	1.000000000	.000000150	*	*
	.0000010	1.000000000	.000001500	*	*
	.0000100	1.000000000	.000050000	*	*
	.0001000	.99999996	.000150000	.000000021	*
	.0005000	.999999906	.000750000	.000000531	*
	.0010000	.999999625	.001200000	.000001360	.0000000
	.0050000	.999990625	.007499885	.000053129	.0000003
	.0080000	.999976000	.011999531	.000135993	.0000015
	.0100000	.999962500	.014999084	.000212482	.0000029
	.0200000	.999849996	.029992666	.000849711	.0000236
	.0300000	.999662488	.044975252	.001911039	.0000798
	s = 1	375e ²			
	1 -				
	s _s = 2.12	5e*			
	s ₄ = 2.96	e ³			
		Fourier Co	Table B.8 Defficient fo	or F(3,1)	
	e			•	C g
		c _o	c ₁	or F(3,1)	С 3 *
	.0000001 .0000010		c ₁ 000000300	° 2	C 3 * *
	.0000001	-3.00000000	c ₁ 000000300	° 2	C 3 * * *
	.0000001 .0000010 .0000100	-3.00000000 -3.00000000 -3.00000000 -3.9999999	000003000 000030000 000300000	* * * 00000030	C 3 * * *
	.0000001 .0000010 .0000100 .0001000	-3.00000000 -3.00000000 -3.00000000 -3.00000000 -2.9999999	000003000 000030000 000300000 000300000 001500000	* * *00000030	* * * *
	.0000001 .0000010 .0000100 .0001000 .0005000	-3.00000000 -3.00000000 -3.00000000 -3.00000000 -2.9999999 -2.99999904	00000300 00003000 00030000 00030000 001500000 002400000	* * *00000003000000750000001920	* * * * 000000
	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000	-3.00000000 -3.00000000 -3.00000000 -2.9999999 -2.99999904 -2.99999850	00000300 00003000 00030000 00030000 001500000 002400000 002999998	* * 000000030 00000750 000001920 000003000	* * * 000000
	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000	-3.00000000 -3.00000000 -3.00000000 -2.9999999 -2.99999904 -2.99999850 -2.99996250	000000300 00003000 00030000 00030000 001500000 002400000 002999998 014999766	* * 00000030 00000750 00001920 00003000 000074998	* * * 000000 000000
	.0000001 .0000100 .0001000 .0001000 .0005000 .0010000 .0050000	-3.00000000 -3.00000000 -3.00000000 -2.9999999 -2.9999994 -2.99999850 -2.99996250 -2.99990400	000000300 00003000 00030000 00030000 001500000 002400000 002999998 014999766 023999040	* * 000000030 00000750 000003000 000074998 000191990	* * * 000000 000000 000004
	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000	-3.00000000 -3.00000000 -3.00000000 -2.9999999 -2.99999904 -2.99999850 -2.99996250	000000300 00003000 00030000 00030000 001500000 002400000 002999998 014999766	* * 00000030 00000750 00001920 00003000 000074998	* * * 0000000 0000004 000017 0000033
	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000 .0050000 .0080000	-3.00000000 -3.00000000 -3.00000000 -2.9999999 -2.99999904 -2.99999850 -2.99996250 -2.99990400 -2.99985000	00000300 00003000 00030000 00030000 001500000 002400000 00299998 014999766 023999040	* * 000000030 00000750 00001920 000074998 000191990 000299975	* * * 0000000 0000004 000017 000033
	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000 .0050000 .0080000 .0100000 .0200000	-3.00000000 -3.00000000 -3.00000000 -2.9999999 -2.99999904 -2.99999850 -2.99996250 -2.99985000 -2.99939994 -2.999864970	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * 0000000 0000004 000017 000033
	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000 .0050000 .0080000 .0100000 .0200000	-3.00000000 -3.00000000 -3.00000000 -2.9999999 -2.99999904 -2.99999850 -2.99996250 -2.99990400 -2.99985000 -2.99939994 -2.99864970 1.5e ²	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * * 0000000 0000004 000017 000033
	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0080000 .0100000 .0200000 .0300000	-3.00000000 -3.00000000 -3.00000000 -2.00000000 -2.99999963 -2.99999850 -2.99996250 -2.99990400 -2.99985000 -2.99939994 -2.99864970 1.5e ² +1.875e ³	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * 0000000 0000004 000017 000033
	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000 .0050000 .0080000 .0100000 .0200000 .0300000 c = -3 +	-3.00000000 -3.00000000 -3.00000000 -3.00000000 -2.99999963 -2.99999850 -2.99996250 -2.99996250 -2.99990400 -2.99985000 -2.99985000 -2.99985000 -1.5e ² +1.875e ³	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * 0000000 0000004 000017 000033
	.0000001 .0000100 .0001000 .0005000 .0005000 .0050000 .0050000 .0080000 .0100000 .0200000 .0300000 C ₀ = -3 + C ₁ = -3e C ₂ = -3e ²	-3.00000000 -3.00000000 -3.00000000 -3.00000000 -2.99999963 -2.99999850 -2.99996250 -2.99996250 -2.99990400 -2.99985000 -2.99985000 -2.99985000 -1.5e ² +1.875e ³	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * *00000000000004000001700003300002690000910
	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000 .0050000 .0080000 .0100000 .0200000 .0300000 c = -3 +	-3.00000000 -3.00000000 -3.00000000 -3.00000000 -2.99999963 -2.99999850 -2.99996250 -2.99996250 -2.99990400 -2.99985000 -2.99985000 -2.99985000 -1.5e ² +1.875e ³	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * * 0000000 0000004 000017 000033
•	.0000001 .0000100 .0001000 .0005000 .0005000 .0050000 .0050000 .0080000 .0100000 .0200000 .0300000 C ₀ = -3 + C ₁ = -3e C ₂ = -3e ²	-3.00000000 -3.00000000 -3.00000000 -3.00000000 -2.99999963 -2.99999850 -2.99996250 -2.99996250 -2.99990400 -2.99985000 -2.99985000 -2.99985000 -1.5e ² +1.875e ³	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * * 0000000 0000004 000017 000033
	.0000001 .0000100 .0001000 .0005000 .0005000 .0050000 .0050000 .0080000 .0100000 .0200000 .0300000 C ₀ = -3 + C ₁ = -3e C ₂ = -3e ²	-3.00000000 -3.00000000 -3.00000000 -3.00000000 -2.99999963 -2.99999850 -2.99996250 -2.99996250 -2.99990400 -2.99985000 -2.99985000 -2.99985000 -1.5e ² +1.875e ³	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * * 0000000 0000004 000017 000033
	.0000001 .0000100 .0001000 .0005000 .0005000 .0050000 .0050000 .0080000 .0100000 .0200000 .0300000 C ₀ = -3 + C ₁ = -3e C ₂ = -3e ²	-3.00000000 -3.00000000 -3.00000000 -3.00000000 -2.99999963 -2.99999850 -2.99996250 -2.99996250 -2.99990400 -2.99985000 -2.99985000 -2.99985000 -1.5e ² +1.875e ³	00000300 000003000 000030000 00030000 001500000 002400000 002999988 014999766 023999040 029998124 059984996	* * 000000030 00000750 00001920 000074998 000191990 000299975 001199600	* * * 0000000 0000004 0000017 0000033

				1 1/ 11 \			₹
		Fourier	Table B.	B.9 ent for F(3,3)	ñ		
	Q.	C		CZ	C ₃	n	
	. 0000001	-1.99999995	1.99999980	.000000150	*	*	
	.0000010	-1.9999950	1.99999800	.000001200	*	*	
	.00000100	-1.99999500	1.99998000	.000012000	*	*	
	.0001000	-1.99944999	1.99980000	.000149980	.000000000	*	
	.0002000	-1.99974975	1.99899988	.000749500	.0000000375	*	
	.0008000	-1.99959936	1.99839968	.001198720	.0000000959	*	
	.0010000	-1.99949900	1.99799950	.001498000	.000001498	.000000000	
5	.0050000	-1.99747503	1.98998766	.007449949	.000037218	.000000000	
	. 0080000	-1.99593613	1.98396864	.011871793	.000094846	.000000842	
	.0100000	-1.99490025	1.97995124	.014799600	.000147744	.000001640	
	. 0200000	-1.98960196	1.95980991	.029196931	.000581910	.000012904	
	.0300000	-1.98410655	1.93958327	.043190086	.001288814	.000042819	
	c_ = -2 +	.5e + e ²	25e³				
	1 2	$2e5e^2 + 1$.244e³				
	c. = 1.5e	- 2e ² 4e ³					
	= 1.5e	2 - 2.25e³					
	(5/4)	60					

e	5	5 2	5 ₉	5 4					
.0000001	-2.00000000	000000150	*	*					
.0000010	-2.00000000	000001500	*	*					
.0000100	-2.00000000	000015000	*	*					
.0001000	-2.00000000	000150000	000000015	*					
.0005000	-1.99999988	000750000	000000375	*					
.0008000	-1.99999968	001199999	000000960	*					
.0010000	-1.99999950	001499999	000001500	000000002					
.0050000	-1.99998750	007499865	000037499	000000208					
.0080000	-1.99996800	011999445	000095993	000000853					
.0100000	-1.99995000	014998917	000149984	000001667					
.0200000	-1.99980006	029991334	000599737	000013326					
.0300000	-1.99955033	044970761	001348672	000044943					
$s_{1} = -2 + .5e^{2}$									
s ₂ = -1.50	∍ + 1.08e ⁹								
s = -1.50	<u> </u>								

Table B.11 Fourier Coefficient for F(4,2)

 $= -(5/3)e^{9}$

CONTROL CONTROL

е	c o	_ 1	^C 2	C 3
.0000001	-1.00000000	000000100	*	*
.0000010	-1.00000000	000001000	*	*
.0000100	-1.00000000	000010000	*	*
.0001000	-0.99999999	000100000	000000010	*
.0005000	-0.9999988	000500000	000000250	*
.0008000	-0.9999968	000800000	000000640	*
.0010000	-0.99999950	000999999	000001000	000000001
.0050000	-0.99998750	004999922	000024999	000000141
.0080000	-0.99996800	007999680	000063997	000000576
.0100000	-0.99995000	009999376	000099991	000001125
.0200000	-0.99979998	019995000	000399866	000008996
.0300000	-0.99954990	029983123	000899325	-,000030346
$c_{0} = -1 + $ $c_{1} = -e + $ $c_{2} = -e^{2}$ $c_{3} = 1.125$.5e ² .625e ³			

Table B.12 Fourier Coefficient for F(4,3)

е	S ₁	5 2	5 9	5 4
.0000001	-1.00000000	000000100	*	*
.0000010	-1.00000000	000001000	*	*
.0000100	-1.00000000	000010000	*	*
.0001000	-0.99999999	000100000	000000011	*
.0005000	-0.99999978	000500000	000000281	*
.0008000	-0.99999944	000799999	000000720	*
.0010000	-0.99999913	0009999999	000001125	000000001
.0050000	-0.99997813	004999854	000028124	000000167
.0080000	-0.99994400	007999403	000071993	000000683
.0100000	-0.99991250	009998833	000112484	000001333
.0200000	-0.99965001	019990668	000449741	000010659
.0300000	-0.99921257	029968508	001011191	000035945
	2			

Table B.13 Fourier Coefficient for F(4,4)

***		Fourier Co	Table B.12 pefficient fo	or F(4,3)	
	е	5	5 2	5 3	54
	.0000001		000000100	*	*
	.0000010	1	000001000	*	*
	.0000100	1	000010000	*	*
	.0001000	-0.9999999	1		*
	.0005000	-0.99999978	1		*
	.0008000	-0.99999944	000/99999	000000720 000001125	000000
	.0050000	-0.99997813		000001125	000000
	.0080000	-0.99994400	ł	000071993	000000
	.0100000	-0.99991250		000112484	000001
	.0200000	-0.99965001		000449741	000010
	.0300000	-0.99921257		001011191	0000359
	s = -1 +	.875e ²	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
	1 1	(7/6)e ³			
) 2				
	s = -(9/				
	$s_{A} = (4/3)$	>e³			
£¥£					
<i>31</i> 5 1.●		Fourier C	Table B.13 pefficient fo	or F(4,4)	
316 [•	e	Fourier Co	c_	or F(4,4)	°.
[• 7,12	<u> </u>	C ₁	c c c c c c c c c c c c c c c c c c c	C 3	C 4
[• 7,13	.0000001	-1.0000000	c 2 000000100	C_	C 4
513 [•	.000001	-1.00000000 -1.00000000	00000100	C 3	C 4 * *
513 I •	.0000001	-1.00000000 -1.00000000 -1.00000000	00000100 00001000	°3 * *	C 4 * * *
[•	.000001	-1.00000000 -1.00000000	00000100	C 3	C 4 * * * *
313 ! ●	.0000001 .000010 .000100	-1.00000000 -1.00000000 -1.00000000 -1.00000000	000000100 00001000 00010000 00010000	* * * 00000011	C 4 * * * * *
313 [•	.0000001 .0000100 .0001000 .0001000	-1.0000000 -1.0000000 -1.0000000 -1.0000000 -1.00000009	000001000 000010000 000100000 000100000 0005000000	* * * 000000011 000000281	* * * * * * * *
313 [•	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000	-1.00000000 -1.00000000 -1.00000000 -1.0000000 -1.0000009 -1.0000037 -1.00000938	000000100 00001000 00010000 000100000 000500000 000800000 005000000	* *000000011000000720000001125000028125	* * * * *000000
313 [•	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000 .0050000	-1.00000000 -1.00000000 -1.00000000 -1.00000009 -1.00000024 -1.0000037 -1.00000938 -1.00002400	00000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085	* *0000000110000028100000112500002812500007200	* * * * *0000000
313 !●	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000 .0050000 .0080000	-1.00000000 -1.00000000 -1.00000000 -1.00000009 -1.00000024 -1.0000037 -1.00002400 -1.00003750	000000100 00001000 00010000 000100000 000500000 005000000 005000020 008000085 010000167	* *00000001100000281000001125000028125000072000000112499	* * * *000000000000000000000000000
i•	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0080000 .0100000 .0100000	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000024 -1.0000037 -1.00002400 -1.00003750 -1.00015005	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 0000000 0000000 0000010 0000106
ste L•	.0000001 .0000100 .0001000 .0005000 .0008000 .0010000 .0050000 .0080000	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.0000009 -1.0000037 -1.0000938 -1.00002400 -1.00003750 -1.00015005 -1.00033776	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000281000001125000028125000072000000112499	* * * 0000000 0000000 0000010 0000106
313 [•	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0080000 .0100000 .0100000	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.0000009 -1.0000037 -1.0000938 -1.00002400 -1.00003750 -1.00015005 -1.00033776	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 0000000 0000000 0000010 0000100
sts i.•	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0050000 .0100000 .0200000 .0300000	-1.00000000 -1.00000000 -1.00000000 -1.00000009 -1.00000024 -1.0000037 -1.00002400 -1.00003750 -1.00015005 -1.00033776	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 0000000 0000000 0000010 0000106
313 [•	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0050000 .0100000 .0200000 .0300000	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000024 -1.0000037 -1.00002400 -1.00003750 -1.00015005 -1.00033776 (3/8) e ² (1/6) e ³	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 0000000 0000000 0000010 0000100
	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0050000 .0100000 .0200000 .0300000	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000024 -1.0000037 -1.00002400 -1.00003750 -1.00015005 -1.00033776 (3/8) e ² (1/6) e ³	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * *00000000000000000001000001060000359
i•	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0050000 .0100000 .0200000 .0300000 c = -1 - c = -e - c = -(9/g	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000009 -1.0000037 -1.0000037 -1.0000938 -1.00002400 -1.00003750 -1.00015005 -1.00033776 (3/8) e ² (1/6) e ³ 8) e ²	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 0000000 0000000 0000010 0000100
31's [●	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0050000 .0100000 .0200000 .0300000	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000009 -1.0000037 -1.0000037 -1.0000938 -1.00002400 -1.00003750 -1.00015005 -1.00033776 (3/8) e ² (1/6) e ³ 8) e ²	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 0000000 0000000 0000010 0000100
	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0050000 .0100000 .0200000 .0300000 c = -1 - c = -e - c = -(9/g	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000009 -1.0000037 -1.0000037 -1.0000938 -1.00002400 -1.00003750 -1.00015005 -1.00033776 (3/8) e ² (1/6) e ³ 8) e ²	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 000000 000000 000001 000010
	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0050000 .0100000 .0200000 .0300000 c = -1 - c = -e - c = -(9/g	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000009 -1.0000037 -1.0000037 -1.0000938 -1.00002400 -1.00003750 -1.00015005 -1.00033776 (3/8) e ² (1/6) e ³ 8) e ²	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 000000 000000 000001 000010
	.0000001 .0000100 .0001000 .0005000 .0005000 .0010000 .0050000 .0050000 .0100000 .0200000 .0300000 c = -1 - c = -e - c = -(9/g	-1.00000000 -1.00000000 -1.00000000 -1.00000000 -1.00000009 -1.0000037 -1.0000037 -1.0000938 -1.00002400 -1.00003750 -1.00015005 -1.00033776 (3/8) e ² (1/6) e ³ 8) e ²	000000100 00001000 00010000 00010000 000500000 001000000 005000020 008000085 010000167 020001334	* *00000001100000072000001125000072000000112499000449989	* * * 000000000000000001

Table B.14 Fourier Coefficient for F(5,5)

۵,	*	*	*	*	*	*	*	.000000042	.000000172	.000000337	.000002720	.000009268						
E 3	*	*	*	. 0000000004	.000000004	.000000240	.000000375	.000000422	.000024192	.000037875	.000153004	.000347645						
C_2	.0000000050	.0000000500	.000200000	. 000050005	.000250125	.000400320	.000200200	.002512521	.004032086	.005050168	.010201360	.015454641						
C ₁	1.00000010	1.00000100	1.00001000	1.00010001	1.00050016	1.00080040	1.00100063	1.00501570	1.00804032	1.01006332	1.02025511	1.03057992	1.5e³	+ (5/8)e³	er .			
CO	000000150	000001500	000015000	000150015	000750375	001200961	001501502	007537688	012096774	1515152	030612245	046391753	= -1.5e - 1.5e ² - 1	$1 + e + (5/8)e^2 +$	= .5e +.5e ² + .168e ³	$=(3/8)e^{2} + (3/8)e^{9}$	2 G	
ũ	.0000001	.00000010	.00000100	.0001000	.0005000	.0008000	.0010000	.005000	.00008000	.0100000	.0200000	.0300000	c_ = -1.5e	C = 1 + E	c, = .5e +	c_ = (3/8)e	$c_{\bullet} = (1/3)e^{9}$	

Table B.15 Fourier Coefficient for F(5,6)

е	S ₁	5 2	5 9	S ₄
.0000001	. 999999900	.000000050	*	*
.0000010	.999999000	.000000500	*	*
.0000100	.999990000	.000005000	*	*
.0001000	.999899999	.000049995	.00000004	*
.0005000	.999499969	.000249875	.000000094	*
.0008000	.999199920	.000399680	.000000240	*
.0010000	.998999875	.000499500	.000000375	*
.0050000	. 994996891	.002487479	.000009328	.000000041
.0080000	.991992064	.003967915	.000023807	.000000169
.0100000	.989987625	.004949835	.000037123	.000000330
.0200000	.979951001	.009798693	.000146967	.000002612
.0300000	.969890879	.014545635	.000327209	.000008724

 $s_1 = 1 - e - (1/8)e^2 + (1/8)e^3$

 $s_2^2 = .5e - .5e^2 - .165e^3$

 $s_3 = (3/8)e^2 - (3/8)e^3$

 $s_4 = (1/3)e^3$

Table B.16 Fourier Coefficient for F(6,5)

	S ₁	5 2	s s	5 4
.0000001	-1.00000010	000000100	*	*
.0000010	-1.00000100	000001000	*	*
.0000100	-1.00001000	000010000	*	*
.0001000	-1.00010001	000100010	000000011	*
.0005000	-1.00050016	000500250	000000281	*
.0008000	-1.00080040	000800640	000000721	*
.0010000	-1.00100063	001001000	000001126	000000001
.0050000	-1.00501570	005025042	000028266	000000167
.0080000	-1.00804032	008064172	000072576	000000688
.0100000	-1.01006313	010100337	000113626	000001347
.0200000	-1.02025511	020402721	000459011	000010879
.0300000	-1.03057992	030909281	001042934	000037073

 $s_1 = -1 - e - (5/8)e^2 - (5/8)e^3$

 $s_{2}^{2} = -e - e^{2} - (1/3)e^{9}$

 $s_a = -(9/8)e^2 - (9/8)e^3$

 $s_{4} = -(4/3)e^{9}$

Table B.17 Fourier Coefficient for F(6,6)

e	_ 1	C 2	C 3	C 4
.0000001	.999999900	.000000100	*	*
.0000010	.999999000	.000001000	*	*
.0000100	.999990000	.000010000	*	*
.0001000	.999899999	.000099990	.000000011	*
.0005000	.999499969	.000499750	.000000281	*
.0010000	.998999875	.000899000	.000001124	.000000001
.0050000	.994996890	.004974959	.000027984	.00000166
.0080000	.991992064	.007935831	.000071421	.000000677
.0100000	.989987625	.009899670	.000111369	.000001320
.0200000	.979951001	.019597387	.000440901	.000010450
.0300000	.969890879	.029091271	.000981628	.000034895

 $c_{1} = 1 - e - (1/8)e^{2} + (1/8)e^{3}$ $c_{2} = e - e^{2} - (1/3)e^{3}$ $c_{3} = (9/8)e^{2} + (9/8)e^{3}$

 $c_4 = (4/3)e^9$

のでは、100mm

Table B.18 Fourier Coefficient for y(1)

Ų	*	*	*	*	*	.000000000	.000000000	.000000489	.000001991	.000003876	.000030465	.000100973						
c 3	*	*	*	.000000028	.00000000	.0000001811	_				.001093392 0.0	.002415313 .0						
 C 2	.0000000200	.00020000	.000020000	.000199963	.000999083	.001597654	.001996334	.009908445	.015765791	.019634228	.038540536	.056724469		/3)e³				
C 1	1.33333307	1.33333067	1.33330667	1.33306668	1.33200029	1.33120075	1.33066783	1.32002913	1.31207450	1.30678301	1.28046414	1.25437504	$3)e^2 + .5e^3$	$(7/6)e^2 + (1$	7/8)e ³			
°5	99999933	999999333	999993333	999933337	999666750	999466880	999333666	996674938	994687746	993366171	986796065	98028 6 828	$= -1 + (2/3)e - (1/3)e^{2}$	= $(4/3) - (8/3)e + (7/6)e^2 + (1/3)e^3$	$2e - (11/3)e^2 + (7/8)e^9$	$= 2.83e^2 - 4.5e^3$		
a	.0000001	.00000010	.00000100	.0001000	.0005000	.0008000	.0010000	.0050000	.0080000	.0100000	.0200000	.0300000	C = -1 +	$c_i = (4/3)$	c, = 2e -	c_ = 2.83e	c = 4e	

Table B.19 Fourier Coefficient for y(3

	i i				
a	Co	C ₄	C.2	C 3	,
10000000	000000100	000000100 -2. 00000000	000000300	*	*
.0000010	0000001000	0000001000 -2.000000000	0000003000	*	*
.00000100	000010000	000010000 -2.00000000	-, 000030000	*	*
.0001000	000100000	-2.00000002	000300000	000000042	*
.0005000	00050000	-2.00000044	001500000	000001062	*
.000B000	00080000	-2.00000112	002400001	000002720	000000003
.0010000	001000001	-2.00000175	003000001	000005250	-,000000000
.005000	005000094	-2.00004375	015000167	000106250	000000740
.0080000	008000384	-2.00011201	000272002	000003029	0000003029
.0100000	010000750	-2.00017501	030001333	000425005	000005917
.0200000	020006002	020006002 -2.00070022		060010670001700078	000047330
.0300000	030020265	030020265 -2.00157609 090036030 003825393	090036030	003825393	000159723
	$= -e - (3/4)e^2$				
c, = -2 -	$= -2 - (7/4)e^2$				
r, = -3e.	-3e - (4/3)e ⁹				
$c_{\rm s} = -(17/4)e^2$	/4)e ²	,			
$c_1 = -5.92e^3$	2e³				

Table B.20 Fourier Coefficient for y(4)

e	S ₁	5 2	S 9	5
.0000001	2.00000000	.000000300	*	*
.0000010	2.00000000	.000003000	*	*
.0000100	2.00000000	.000030000	*	*
.0001000	1.99999997	.000300000	.000000042	*
.0005000	1.99999931	.001499999	.000001062	*
.0008000	1.99999824	.002399998	.000002720	.0000000003
.0010000	1.99999725	.002999995	.000004250	.000000006
.0050000	1.99993125	.014999396	.000106245	.000000740
.0080000	1.99982400	.023997525	.000271968	.000003029
.0100000	1.99972501	.029995167	.000424921	.000005915
.0200000	1.99890012	.059961340	.001698743	.000047294
.0300000	1.99752558	.089869549	.003818637	.000159449

 $s_i = 2 - (11/4)e^2$

 $s_{2}^{-} = 3e - 4.825e^{3}$

 $s_9^- = (17/4)e^2$

s₄ = 5.92e³

Bibliography

- Berreen, T.F. and Crisp J.D.C. "For the Relative Trajectories of a Probe Ejected From a Space Station," Celestial Mechanics 13: 75-78 (1976).
- Brouwer, D. and Clemence G.M. <u>Methods of Celestial</u>
 <u>Mechanics</u>. New York: Academic Press, 1961.
- Buning, Harm. Lecture notes for Aerospace Engineering 542, University of Michigan, September 1984.
- Calico, R.A. and Wiesel, W.E. "Control of Time-Periodic Systems," <u>Journal of Guidance, Control, and Dynamics, 7</u>: 671-676 (November-December 1984).
- Kaplan, Marshall H. <u>Modern Sjpacecraft Dynamics & Control.</u> New York: John Wiley and Sons, 1976.
- Lancaster, E.R. "Relative Motion of Two Particles in Elliptical Orbits," <u>AIAA Journal</u> 8: 1878-1879 (1970).
- Mierovich, Leonard. <u>Methods of Analytical Dynamics</u>. New York: McGraw-Hill, 1970.
- Reid, Gary J. <u>Linear System Fundamentals</u>. New York: McGraw-Hill, 1983.
- Wiesel, W. "Perturbation Theory in the Vicinity of a Periodic orbit by Repeated Linear Transformations," Celestial Mechanics 23: 231-242 (1981)

VITA

Second Lieutenant James M. Meintel was born on 31 October 1963 in Rochester, New York. He graduated from Archbishop Alter High School in Kettering, Ohio, in 1982. He attended the University of Michigan, Ann Arbor, from which he received the degree of Bachelor of Science in Aerospace Engineering in May of 1986. Upon graduation he received a commission in the USAF through the ROTC program. Later that month he entered the School of Engineering, Air Force Institute of Technology.

Permanemt address: 5184 Pondoray Pl.

Kettering, Ohio 45440

I REPORT	DOCUMENTATIO	N PAGE			m Approved 18 No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS	J ON	18 140. 0704-0788
UNCLASSIFIED					
SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT	
2b. DECLASSIFICATION / DOWNGRADING SCHED	LII F		for public r		
	011	distribut	ion unlimite	d,	
4. PERFORMING ORGANIZATION REPORT NUMB	ER(S)	5. MONITORING	ORGANIZATION RE	PORT NUMBER	(\$)
AFIT/GA/ENG/87D-3					
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a NAME OF M	ONITORING ORGA	NIZATION	
School of Engineering	(If applicable)	74: 102,012 01 10	OMITORING ONGE	VIEZ IION	
	AFIT/ENG				
6c. ADDRESS (City, State, and ZIP Code)	- 	7b. ADDRESS (C	ty, State, and ZIP C	iode)	
Air Force Institute of Techno					
Wright-Patterson AFB OH 45433	-6583				
8a. NAME OF FUNDING/SPONSORING	8b. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICATION N	UMBER
ORGANIZATION	(If applicable)				
On ADDOTES (Cir. Survey of 700 c.)	<u> </u>				
8c. ADDRESS (City, State, and ZIP Code)		PROGRAM	FUNDING NUMBERS	TASK	WORK UNIT
		ELEMENT NO.	NG.	NO	ACCESSION NO
TYPE OF REPORT 13b. TIME (FROM _IE SUPPLEMENTARY NOTATION	n 87 TO <u>Dec 87</u>	1987 Novem	ort (Year, Month, L ber	Day) 15. PAGE	75
. /	•		7	•	u.
	,		4.		
	18. SUBJECT TERMS (Continue on revers	e if necessary and	identify by blo	ck number)
17. COSATI CODES FIELD GROUP SUB-GROUP U3/' U3	Elliptical On	rbit Trajecto	e if necessary and Dries, Satel	identify by bloc Lite Ørbits	ck number)
FIELD GROUP SUB-GROUP	/18. SUBJECT TERMS (Elliptical Or Rendezvous Ar	rbit Trajecto	e if necessary and	identify by bloc Lite Ørbits	ck number)
FIELD GROUP SUB-GROUP 03/1 03 22 03	Elliptical On Rendezvous An	rbit Trajectorajectorajectorajectories,	re if necessary and pries, Satell	identify by block	s;
FIELD GROUP SUB-GROUP U3/7:: 03 22 03 19. ABSTRACT (Continue on reverse if necessary	Elliptical On Rendezvous And identify by block in	rbit Trajectorajectorajectorajectories,	ories, Satel	identify by blockite Ørbits	IAW AFR 190-17
FIELD GROUP SUB-GROUP 03/ 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William	Rendezvous And identify by block of E. Wiesel,	rbit Trajectorajectories,	Privale. Wo	identify by blocklite Ørbits	1AW AFR 190-17
FIELD GROUP SUB-GROUP 03/ 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William	Elliptical On Rendezvous And identify by block in	rbit Trajectorajectories,	Baproved for E. WC Dean for Res	public release: LAVER earch and Protestitute of Icchnolog	IAW AFR 190-17
FIELD GROUP SUB-GROUP 03.7 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed f	Rendezvous And identify by block of E. Wiesel, it to Professor of	rbit Trajectorajectorajectories, umber) Astronautics	Baproved for E. WC Dean for Res Wright-Putter	public release: LAVER edich and Protestitute of Technologion AFB OH 454	IAW AFR 190-17
FIELD GROUP SUB-GROUP 03.7 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed fidentified. Equations of moti	Elliptical On Rendezvous And identify by block of E. Wiesel, ite Professor of orm solution for on are derived to	rbit Trajectorajectorajectories, umber) Astronautics two bodies	Approved for E. WC Death for Res Wright-Patters in close-ell	public release: LAVER eurch and Processitute of Icchnologion AFB OH 454; iptical or	IAW AFR 190-17. It is a first of the first
FIELD GROUP SUB-GROUP 03/ 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed fidentified. Equations of motified and its applicability to this	Rendezvous And identify by block of the Professor of the	rbit Trajectories, umber) Astronautics two bodies using Hamilto	Deproved for E. WC Dean for Res Air Force Ins Wright-Patters in close-ell	public release: LAVER earth and Protestitute of Ichnologion AFF ON 454 iptical or	IAW AFR 190-17 Ideal Development of (Alexandre) bits is et theory,
FIELD GROUP SUB-GROUP 037' 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed f identified. Equations of moti and its applicability to this derived in closed form and num	Elliptical On Rendezvous And identify by block of E. Wiesel, ite Professor of orm solution for on are derived uproblem, is discerically, using	rbit Trajectorajectorajectories, umber) Astronautics two bodies using Hamiltorussed. The	Devin tor Res Air Force Ins Wright-Putters in close-ell on's equation solution for	public release: LAVER HOUSE OF TECHNOLOGICAL OF THE CANALA CANA	IAW AFR 190-17. IAW AFR 190-17. Isolated Development by (AIG). Isolated is set theory, orbits is set theory.
FIELD GROUP SUB-GROUP 03/ 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed fidentified. Equations of motiand its applicability to this derived in closed form and num solution for elliptical orbits	Elliptical On Rendezvous And identify by block of E. Wiesel, it to Professor of orm solution for on are derived uproblem, is discerically, using is found numerical	rbit Trajectories, rajectories, with the conduction of the conduct	Approved for E. WC Death for Res Wright-Patters in close-ell on's equation solution for Expanding and harmon	public release: LAVER curch and Professitute of Icchnologion AFF OH 454; iptical or is. Floque circular nic analys	IAW AFR 190-17. Identify (Arc.) State of the control of the cont
FIELD GROUP SUB-GROUP 03/ 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed f identified. Equations of moti and its applicability to this derived in closed form and num solution for elliptical orbits finding the dependence on ecce	Elliptical On Rendezvous And identify by block of E. Wiesel, it to Professor of orm solution for on are derived uproblem, is discerically, using is found numerical	rbit Trajectories, rajectories, with the conduction of the conduct	Approved for E. WC Death for Res Wright-Patters in close-ell on's equation solution for Expanding and harmon	public release: LAVER curch and Professitute of Icchnologion AFF OH 454; iptical or is. Floque circular nic analys	IAW AFR 190-17. Identify (Arc.) State of the control of the cont
FIELD GROUP SUB-GROUP 037 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed fidentified. Equations of motiand its applicability to this derived in closed form and num	Elliptical On Rendezvous And identify by block of E. Wiesel, it to Professor of orm solution for on are derived uproblem, is discerically, using is found numerical	rbit Trajectories, rajectories, with the conduction of the conduct	Approved for E. WC Death for Res Wright-Patters in close-ell on's equation solution for Expanding and harmon	public release: LAVER curch and Professitute of Icchnologion AFF OH 454; iptical or is. Floque circular nic analys	IAW AFR 190-17 Identify (Arc.) State of the corry, orbits is is. The
FIELD GROUP SUB-GROUP 03/ 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed f identified. Equations of moti and its applicability to this derived in closed form and num solution for elliptical orbits finding the dependence on ecce	Elliptical On Rendezvous And identify by block of E. Wiesel, it to Professor of orm solution for on are derived uproblem, is discerically, using is found numerical	rbit Trajectories, rajectories, with the conduction of the conduct	Approved for E. WC Death for Res Wright-Patters in close-ell on's equation solution for Expanding and harmon	public release: LAVER curch and Professitute of Icchnologion AFF OH 454; iptical or is. Floque circular nic analys	IAW AFR 190-17. Identify (Arc.) State of the control of the cont
FIELD GROUP SUB-GROUP 03/ 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed f identified. Equations of moti and its applicability to this derived in closed form and num solution for elliptical orbits finding the dependence on ecce function of eccentricity.	Elliptical On Rendezvous And identify by block of E. Wiesel, in the Professor of orm solution for on are derived uproblem, is discerically, using is found numerial intricity. The second contraction of	rbit Trajectories, rajectories, umber) Astronautics two bodies using Hamilton the Floquet theologically first colution is to	Approved for E. WC Death for Res Wright-Patters in close-ell on's equation solution for Expanding and harmon	public release: LAVER LAVER LAVER LAVER LONG LONG LONG LONG LONG LONG LONG LONG	IAW AFR 190-17. Identify (Arc.) State of the control of the cont
FIELD GROUP SUB-GROUP 03.7 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed f identified. Equations of motiand its applicability to this derived in closed form and num solution for elliptical orbits finding the dependence on eccefunction of eccentricity. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT SUNCLASSIFIED/UNLIMITED SAME AS	Elliptical On Rendezvous And identify by block of E. Wiesel, in the Professor of orm solution for on are derived uproblem, is discerically, using is found numerial intricity. The second contraction of	chit Trajectorajectorajectories, umber) Astronautics two bodies ussed. The Floquet theo cally first colution is to	Desir for Res Air Force Ins Wright-Putters in close-ell on's equation solution for ory and harmo for very sma then found fo	public release: LAVER HUITE OF TECHNOLOGICAL OF AFF OH 454 iptical or iptical or is. Floque circular nic analys l1 eccentr r all time	IAW AFR 190-17. Island Development by (AFC). State is theory, orbits is is. The
FIELD GROUP SUB-GROUP 03/ 03 22 03 19. ABSTRACT (Continue on reverse if necessary Thesis Chairman: William Associa The need for a closed fidentified. Equations of motiand its applicability to this derived in closed form and num solution for elliptical orbits finding the dependence on eccefunction of eccentricity. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	Elliptical On Rendezvous And Identify by block of E. Wiesel, ite Professor of orm solution for on are derived uproblem, is discerically, using is found numerintricity. The series of the professor of the series of	chit Trajectorajectorajectories, umber) Astronautics two bodies ussed. The Floquet theo cally first colution is to	Devices, Satell Approved for the Satell Approved for E. WC Devictor Res Air Force Ins Wright-Patters in close-ell on's equation solution for ory and harmo for very sma then found for CURITY CLASSIFICA IED Include Area Code)	public release: LAVER HUITE OF TECHNOLOGICAL OF AFF OH 454 iptical or iptical or is. Floque circular nic analys l1 eccentr r all time	AFR 190-17. A Y 7 Allow AFR 190-17. A Y 7 Allow AFR 190-17. A Y 7 A Y 8 A Y 8 A Y 8 A A A A A A A A A A A A A A A A A A

DD Form 1473, JUN 86

Previous editions are obsolete.

AFIT?ENY SECURITY CLASSIFICATION OF THIS PAGE

EMED FILMED

MARCH, 1988

DTIC